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Abstract. We present a novel method for generic visual catego-
rization: the problem of identifying the object content of natural 
images while generalizing across variations inherent to the ob-
ject class. This bag of keypoints method is based on vector 
quantization of affine invariant descriptors of image patches. 
We propose and compare two alternative implementations using 
different classifiers: Naïve Bayes and SVM. The main advan-
tages of the method are that it is simple, computationally effi-
cient and intrinsically invariant. We present results for simulta-
neously classifying seven semantic visual categories. These re-
sults clearly demonstrate that the method is robust to back-
ground clutter and produces good categorization accuracy even 
without exploiting geometric information.  

1. Introduction 

The proliferation of digital imaging sensors in mobile phones and consumer-level 
cameras is producing a growing number of large digital image collections. To manage 
such collections it is useful to have access to high-level information about objects 
contained in the image. Given an appropriate categorization of image contents, one 
may efficiently search, recommend, react to or reason with new image instances. 

We are thus confronted with the problem of generic visual categorization. We 
should like to identify processes that are sufficiently generic to cope with many object 
types simultaneously and which are readily extended to new object types. At the same 
time, these processes should handle the variations in view, imaging, lighting and oc-
clusion, typical of the real world, as well as the intra-class variations typical of seman-
tic classes of everyday objects. 

The task-dependent and evolving nature of visual categories motivates an example-
based machine learning approach. This paper presents a bag of keypoints approach to 
visual categorization. A bag of keypoints corresponds to a histogram of the number of 
occurrences of particular image patterns in a given image. The main advantages of the 



method are its simplicity, its computational efficiency and its invariance to affine 
transformations, as well as occlusion, lighting and intra-class variations.  

It is important to understand the distinction of visual categorization from three re-
lated problems: 

Recognition: This concerns the identification of particular object instances. For in-
stance, recognition would distinguish between images of two structurally distinct 
cups, while categorization would place them in the same class.  

Content Based Image Retrieval: This refers to the process of retrieving images on the 
basis of low-level image features, given a query image or manually constructed de-
scription of these low-level features. Such descriptions frequently have little rela-
tion to the semantic content of the image. 

Detection: This refers to deciding whether or not a member of one visual category is 
present in a given image.  Most previous work on detection has centered on ma-
chine learning approaches to detecting faces, cars or pedestrians [1]-[6] While it 
would be possible to perform generic categorization by applying a detector for each 
class of interest to a given image, this approach becomes inefficient given a large 
number of classes. In contrast to the technique proposed in this paper, most existing 
detection techniques require precise manual alignment of the training images and 
the segregation of these images into different views [5], neither of which is neces-
sary in our approach. 

 
Our bag of keypoints approach can be motivated by an analogy to learning methods 

using the bag-of-words representation for text categorization [7]-[10]. The idea of 
adapting text categorization approaches to visual categorization is not new. Zhu et al 
[11] investigated the vector quantization of small square image windows, which they 
called keyblocks. They showed that these features produced more “semantics-
oriented” results than color and texture based approaches, when combined with ana-
logues of the well-known vector-, histogram-, and n-gram-models of text retrieval. In 
contrast to our approach, their keyblocks do not possess any invariance properties. 

The idea of clustering invariant descriptors of image patches has previously been 
applied to the problem of texture classification [12]-[14].  Clearly the problem of 
texture classification is rather different from that of generic categorization. Therefore 
it is natural that these approaches differ from ours. While our method uses clustering 
to obtain quite high-dimensional feature vectors for a classifier, these texture recog-
nizers use clustering to obtain relatively low-dimensional histograms and evaluate the 
similarity of these histograms to previously seen probability densities.  In [12]-[13] 
filter responses are clustered and the recognition is done using the closest model 
measured by a χ2 test. Lazebnik et al [14] cluster affine invariant interest points in 
each image individually and summarize the distribution of the descriptors in form of a 
signature composed of representative cluster members and weights proportional to 
cluster sizes. Signatures of different images are compared using the Earth Mover’s 
Distance [15]. 

Recently Fergus et al [16] proposed a visual categorization method based on in-
variant descriptors of image patches. Their method exploits a probabilistic model that 
combines likelihoods for appearance, relative scale and position, as well as a model of 



the statistics of their patch detector. This elegant approach has a number of limita-
tions. Firstly the method is not efficient: even when models are restricted to 6 image 
patches and training images only contain up to 30 patches, days of CPU time are re-
quired to learn several categories. Secondly, views of objects used for training must be 
segregated, for instance into cars (rear) and cars (side). This is unsurprising given the 
use of an explicit 2D model of relative positions. 

In section 2 we explain the categorization algorithms and the choice of their com-
ponents. In section 3 we present results from applying of the algorithms to the dataset 
of Fergus et al and to a more challenging seven class dataset. We demonstrate that our 
approach is robust to the presence of background clutter and produces state-of-the-art 
recognition performance. 

2. The method 

The main steps of our method are: 
• Detection and description of image patches 
• Assigning patch descriptors to a set of predetermined clusters (a vocabu-

lary) with a vector quantization algorithm 
• Constructing a bag of keypoints, which counts the number of patches as-

signed to each cluster 
• Applying a multi-class classifier, treating the bag of keypoints as the fea-

ture vector, and thus determine which category or categories to assign to 
the image. 

Ideally these steps are designed to maximize classification accuracy while minimiz-
ing computational effort. Thus, the descriptors extracted in the first step should be 
invariant to variations that are irrelevant to the categorization task (image transforma-
tions, lighting variations and occlusions) but rich enough to carry enough information 
to be discriminative at the category level. The vocabulary used in the second step 
should be large enough to distinguish relevant changes in image parts, but not so large 
as to distinguish irrelevant variations such as noise.  

We refer to the quantized feature vectors (cluster centres) as “keypoints” by anal-
ogy with “keywords” in text categorization. However, in our case “words” do not 
necessarily have a repeatable meaning such as “eyes”, or “car wheels”, nor is there an 
obvious best choice of vocabulary. Rather, our goal is to use a vocabulary that allows 
good categorization performance on a given training dataset. Therefore the steps in-
volved in training the system allow consideration of multiple possible vocabularies: 

• Detection and description of image patches for a set of labeled training 
images 

• Constructing a set of vocabularies: each is a set of cluster centres, with re-
spect to which descriptors are vector quantized.  

• Extracting bags of keypoints for these vocabularies 
• Training multi-class classifiers using the bags of keypoints as feature vec-

tors 



• Selecting the vocabulary and classifier giving the best overall classifica-
tion accuracy. 

 
We now discuss the choices made for each step in more detail. 

2.1 Feature extraction 

In computer vision, local descriptors (i.e. features computed over limited spatial sup-
port) have proved well-adapted to matching and recognition tasks, as they are robust 
to partial visibility and clutter. Such tasks require descriptors that are repeatable. Here, 
we mean repeatable in the sense that if there is a transformation between two instances 
of an object, corresponding points are detected and (ideally) identical descriptor val-
ues are obtained around each. This has motivated the development of several scale 
and affine invariant point detectors, as well as descriptors that are resistant to geomet-
ric and illumination variations [17]-[21]. 

It was shown in [21] that if we have affine transformation between two images a 
scale invariant point detector is not sufficient to have the stability of the point’s loca-
tion. Therefore we preferred to work with the Harris affine detector described in [21]. 
However, the reader should be aware that the benefits of this choice are not clear cut: 
firstly because most real world objects have three-dimensional structures whose varia-
tions are not well captured by affine transformations; secondly since attempts to in-
crease the invariance of a feature typically result in a loss of discriminative informa-
tion.  

Harris affine points are detected by an iterative process. Firstly, positions and 
scales of interest points are determined as local maxima (in position) of a scale-
adapted Harris function, and as local extrema in scale of the Laplacian operator. Then 
an elliptical (i.e. affine) neighborhood is determined. This has a size given by the 
selected scale and a shape given by the eigenvalues of the image’s second moment 
matrix. The selection of position/scale and the elliptical neighborhood estimation are 
then iterated and the point is kept only if the process converges within a fixed number 
of iterations. 

The affine region is then mapped to a circular region, so normalizing it for affine 
transformations. Scale Invariant Feature Transform (SIFT) descriptors [18] are com-
puted on that region.  SIFT descriptors are multi-image representations of an image 
neighborhood. They are Gaussian derivatives computed at 8 orientation planes over a 
4x4 grid of spatial locations, giving a 128-dimension vector. Fig. 1 shows an example 
of the maps of gradient magnitude corresponding to the 8 orientations. 

 
 
 
 
 



 
Fig. 1. (From left to right) A Harris affine region; the normalized region; and the 8 maps of 
gradient magnitude constituting the SIFT descriptor. 

We prefer SIFT descriptors to alternatives such as steered Gaussian derivatives or 
differential invariants of the local jet for the following reasons: 
1. They are simple linear Gaussian derivatives. Hence we expect them to be more 

stable to typical image perturbations such as noise than higher Gaussian deriva-
tives or differential invariants. 

2. The use of a simple Euclidean metric in the feature space seems justified. In the 
case of differential invariants obtained by a combination of the components of the 
local jet, the use of a Mahalanobis distance is more appropriate. For instance, one 
would expect a second derivative feature to have a higher variance than a first de-
rivative. Selecting an appropriate Mahalanobis distance a priori seems challeng-
ing. It would not be appropriate to use the covariance matrix of SIFT descriptors 
over the entire dataset, since this is predominantly influenced by inter-class varia-
tions (or more precisely, by variations between keypoints that we do not wish to 
ignore). Measuring a Mahalanobis distance would probably requiring manual 
specification of multiple homologous matching points between different images 
of objects of the same category, seriously working against our objective of pro-
ducing a simple and automated categorization system.  

3. There are far more components to these feature vectors (128 rather than 12 to 16). 
Hence we have a richer and potentially more discriminative representation. 

Recently Mikolajczyk et al [22] have compared several descriptors for matching 
and found that SIFT descriptors perform best. 

2.3 Visual vocabulary construction 

In our method, the vocabulary is a way of constructing a feature vector for classifi-
cation that relates “new” descriptors in query images to descriptors previously seen in 
training. One extreme of this approach would be to compare each query descriptor to 
all training descriptors: this seems impractical given the huge number of training de-
scriptors involved (over 600 000 for our data set). Another extreme would be to try to 
identify a small number of large “clusters” that are good at discriminating a given 
class: for instance [16] operates with 6 parts per category. In practice we find that the 
best tradeoffs of accuracy and computational efficiency are obtained for intermediate 
sizes of clustering. 

Most clustering or vector quantization algorithms are based on iterative square-
error partitioning or on hierarchical techniques. Square-error partitioning algorithms 
attempt to obtain the partition which minimizes the within-cluster scatter or maximizes 
the between-cluster scatter. Hierarchical techniques organize data in a nested sequence 
of groups which can be displayed in the form of a dendrogram or a tree. They need 



some heuristics to form clusters and hence are less frequently used than square-error 
partitioning techniques in pattern recognition. 

We chose to use the simplest square-error partitioning method: k-means [23]. This 
algorithm proceeds by iterated assignments of points to their closest cluster centers 
and recomputation of the cluster centers. Two difficulties are that the k-means algo-
rithm converges only to local optima of the squared distortion, and that it does not 
determine the parameter k.   There exist methods allowing to automatically estimating 
the number of clusters. For example, Pelleg et al [24] use cluster splitting to do it, 
where the splitting decision is done by computing the Bayesian Information Criterion. 
However, in the present case we do not really know anything about the density or the 
compactness of our clusters. Moreover, we are not even interested in a “correct clus-
tering” in the sense of feature distributions, but rather in accurate categorization.  We 
therefore run k-means several times with different number of desired representative 
vectors (k) and different sets of initial cluster centers. We select the final clustering 
giving the lowest empirical risk in categorization [25]. 

2.3 Categorization 

Once descriptors have been assigned to clusters to form feature vectors, we reduce the 
problem of generic visual categorization to that of multi-class supervised learning, 
with as many classes as defined visual categories. The categorizer performs two sepa-
rate steps in order to predict the classes of unlabeled images: training and testing. 
During training, labeled data is sent to the classifier and used to adapt a statistical 
decision procedure for distinguishing categories. Among many available classifiers, 
we compared the Naïve Bayes classifier for its simplicity and its speed, and the Sup-
port Vector Machine since is it often known to produce state-of-the-art results in high-
dimensional problems. 

2.3.2 Categorization by Naïve Bayes 

Naïve Bayes [26] is a simple classifier used often in text categorization. It can be 
viewed as the maximum a posteriori probability classifier for a generative model in 
which: 1) a document category is selected according to class prior probabilities; 2) 
each word in the document is chosen independently from a multinomial distribution 
over words specific to that class. While independence is a naïve assumption, the accu-
racy of the Naïve Bayes classification is typically high [27]. 

Now, considering visual categorization, assume we have a set of labeled images 
{ }iI=I  and a vocabulary { }iv=V  of representative keypoints (i.e. cluster centers). Each 

descriptor extracted from an image is labeled with the keypoint to which it lies closest 
in feature space. We count the number N(t,i) of times keypoint iv  occurs in image iI . 
To categorize a new image, we apply Bayes’s rule and take the largest a posteriori 
score as the prediction: 



 
It is evident in this formula that Naïve Bayes requires estimates of the class-

conditional probabilities of keypoint tv  given category Cj. In order to avoid probabili-
ties of zero, these estimates are computed with Laplace smoothing: 
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2.3.2 Categorization by SVM 

The SVM classifier finds a hyperplane which separates two-class data with maxi-
mal margin [25]. The margin is defined as the distance of the closest training point to 
the separating hyperplane. For given observations X, and corresponding labels Y 
which takes values 1± , one finds a classification function: 

( ) )( bxwsignxf T +=  (3) 

where w, b represents the parameters of the hyperplane.  
Data sets are not always linearly separable. The SVM takes two approaches to this 

problem. Firstly it introduces an error weighting constant C which penalizes misclassi-
fication of samples in proportion to their distance from the classification boundary. 
Secondly a mapping Φ is made from the original data space of X to another feature 
space. This second feature space may have a high or even infinite dimension. One of 
the advantages of the SVM is that it can be formulated entirely in terms of scalar 
products in the second feature space, by introducing the kernel  

( ) ( ) ( )vuvuK Φ⋅Φ=,  (4) 

Both the kernel K and penalty C are problem dependent and need to be determined 
by the user.  

In the kernel formulation, the decision function can be expressed as  
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where ix  are the training features from data space X and iy  is the label of ix . 

Here the parameters iα  are typically zero for most i. Equivalently, the sum can be 

taken only over a select few of the ix . These feature vectors are known as support 
vectors. It can be shown that the support vectors are those feature vectors lying nearest 
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to the separating hyperplane. In our case, the input features ix  are the binned histo-

grams formed by the number of occurrences of each keypoint iv  from the vocabulary 
V in the image Ii . 

In order to apply the SVM to multi-class problems we take the one-against-all ap-
proach. Given an m-class problem, we train m SVM’s, each distinguishes images from 
some category i from images from all the other m-1 categories j not equal to i. Given a 
query image, we assign it to the class with the largest SVM output. 

3 Experiments 

We present results from three experiments.  In the first we explore the impact of the 
number of clusters on classifier accuracy and evaluate the performance of the Naïve 
Bayes classifier. We then explore the performance of the SVM on the same problem. 
The first two experiments were conducted on an in-house seven class dataset. In the 
last experiment we describe results on the four class dataset employed in [16].  

Our in-house database contains 1776 images in seven classes1: faces, buildings, 
trees, cars, phones, bikes and books. Fig. 2 shows some examples from this dataset.  

 

 

Fig. 2. Example images from our in-house database 

It is a challenging dataset, not only because of the large number of classes, but also 
because it contains images with highly variable poses and significant amounts of 

                                                           
1 We hope to make this dataset publicly available soon. It contains 792 faces, 150 buildings, 

150 trees, 201 cars, 216 phones, 125 bikes and 142 books. 



background clutter, sometimes presence of objects from multiple classes although a 
large proportion of each image’s area is occupied by the target category. The images 
have resolutions between 0.3 and 2.1 megapixels and were acquired with a diverse set 
of cameras. The images are color but only the luminance component is used in our 
method. These were gathered by XRCE and Graz University, excepting faces which 
were downloaded from the Web. 
 

We used three performance measures to evaluate our multi-class classifiers. 
 
– The confusion matrix: 
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where { }cN1,...,ji, ∈ , jC  is the set of test images from category j and ( )kIh is the 

category which obtained the highest classifier output for image kI . 
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– The mean ranks. These are the mean position of the correct labels when labels 
output by the multi-class classifier are sorted by the classifier score.  

 
Each performance metric was evaluated with 10-fold cross validation.  

3.2 Naïve Bayes Results 

In Fig. 3 we present the overall error rates using Naïve Bayes as a function of the 
number of clusters k. Each point in Fig. 3 is the best of 10 random trials of k-means. 
The standard-error on the maximum is in the range [1, 3]%.2 The error rate only im-
proves slightly as we move from k = 1000 to k = 2500. We therefore assert that k = 
1000 present a good trade-off between accuracy and speed3. 

 
 
 

                                                           
2 That is, if the experiment of taking the maximum of 10 is repeated multiple times with differ-

ent random clusterings, the standard deviations of the result for the different classes are in 
the range [1,3]%. 

3 It takes about one minute to get predicted labels on the whole database using the Naive Bayes 
classifier with k = 1000 on a 2 GHz processor. 



 
 

Fig. 3. The lowest overall error rate (percentage) found for different choices of k 
 
Table 1 shows the performance as a function of category obtained with this k.  
 

Table 1. Confusion matrix  and the mean rank for the best vocabulary (k=1000).  

 
In the clustering process, there is a risk of bias since images from different catego-

ries contain different numbers of interest points. We therefore used random samples of 
the training data in the clustering step, each sample containing 5000 interest points 
randomly chosen from each class (there are around 640 000 interest points extracted 
from 1776 training images).  

 
Fig. 4 illustrates example clusters obtained for the selected “best” vocabulary.  

True classes � faces buildings trees cars phones bikes books 
faces 76 4 2 3 4 4 13 

buildings 2 44 5 0 5 1 3 
trees 3 2 80 0 0 5 0 
cars 4 1 0 75 3 1 4 

phones 9 15 1 16 70 14 11 
bikes 2 15 12 0 8 73 0 
books 4 19 0 6 7 2 69 

Mean ranks 1.49 1.88 1.33 1.33 1.63 1.57 1.57 



  

 
Fig. 4. Left all patches detected for this image. Right patches from two selected clus-
ters occurring in this image (yellow and magenta ellipses). 
 

The algorithm handles easily multiple objects in the same images (see Fig. 5), oc-
clusion, partial view, any orientation (Fig. 6).   
 

 
Fig. 5.  Images correctly classified containing multiple objects of the same category. 

 

 
Fig. 6.  Profile face, partial view of a car, roof of a house correctly classified as face, cars, 
building. 

In Fig. 7 we show examples where images were well classified even if most of the 
detected interest points were on the “background”.  

 



 

Fig. 7.  Images where background clutter is in a higher percentage than interest points on the 
object. 

Fig. 8 shows some images from the database where objects from other categories 
were also present in the image and the first 3 ranked categories for each of them. 
These images were not considered as multiple labels but labeled by the main object in 
the image.  

 

   
phones, books, cars bikes, buildings, cars buildings, cars, faces 

Fig. 8.  Images where multiple objects were present and the first three ranked labels. 

Finally, Fig. 9 shows some false alarm with the first label and the true label with its 
rank. 

 

  
face(1)… book(2) trees(1)…face(5) phones(1)…cars(2) 

Fig. 9.  Examples of incorrectly ranked images. The correct label’s rank is also shown.  

 
 

3.2 SVM Results 
 
Results from applying the SVM are given in Table 2.  



 
Table 2. Confusion matrix and mean rank for SVM (k=1000, linear kernel). 

 
As expected the SVM outperformed Naïve Bayes, reducing the overall error rate 

from 28 to 15%. We also obtained better mean ranks except in the case of cars. The 
2% error rate for faces seems to be comparable with state-of-the-art approaches, and is 
perhaps surprising that our method exploits virtually no geometric information. How-
ever a direct comparison is not possible since our method must also cope with back-
ground images from the other classes. This low error rate comes at a price of in-
creased confusion of other categories with faces because of the larger number of faces 
in the training set. 

In training this SVM we used the same best vocabulary with k=1000 as for Naïve 
Bayes. We compared linear, quadratic and cubic SVM’s and found that linear method 
gave the best performance (except in the case of cars where a quadratic SVM gave 
better results). The parameter C was determined for each SVM and values of around 
C=0.005 typically gave the best results. 
 
 
3.3     Results on database [16] 
 

We also tested our approach with the freely available4, database used in [16]; i.e. 
the following five object classes and the set of background images: faces (450 im-
ages), airplanes (side) (1074 images), cars (rear) (651 images), cars (side) (720 im-
ages), and motorbikes (side) (826 images).  

The results in Table 3 shows, that the images in this database are much easier to 
classify than our database. These results cannot be directly compared with the results 
stated in [16]. This is because their correct classification rate is a result of classifying 
images of a given class against background images (a two-class problem), which is 
different from our case where we conduct a full multi-class comparison using ranks 
(we hope to publish direct comparison soon). However, the diagonal elements of Ta-
ble 3 suggest that our approach will give at least as good results as theirs in two-class 

                                                           
4 Downloaded from http://www.robots.ox.ac.uk/~vgg/data except for cars (side) that comes 

from  http://l2rcs.cs.uiuc.edu/~cogcomp/index_research.html. 
 

True classes 
� 

faces buildings trees cars phones bikes books 

faces 98 14 10 10 34 0 13 
buildings 1 63 3 0 3 1 6 

trees 1 10 81 1 0 6 0 
cars 0 1 1 85 5 0 5 

phones 0 5 4 3 55 2 3 
bikes 0 4 1 0 1 91 0 
books 0 3 0 1 2 0 73 

Mean ranks 1.04 1.77 1.28 1.30 1.83 1.09 1.39 



classification (generally the two-class classification is more robust than the multi-class 
one).  While the confusion matrices given in Table 2 of [16] are not directly compara-
ble with our results, they suggest a rather high confusion rate in the multi-class case. 

 
Table 3. .Confusion matrix and mean rank for SVM (k=1000, linear kernel). 

 

4 Conclusion 

We have presented a simple but novel approach to generic visual categorization using 
feature vectors constructed from clustered descriptors of image patches. This ap-
proach has been evaluated on a seven category database, demonstrating the method is 
robust to background clutter and produces good categorization accuracy even without 
exploiting geometric information. Our results with SVM are clearly superior to those 
obtained with the simple Naïve Bayes classifier. To our best knowledge this is the 
largest number of visual categories that has ever been subjected to simultaneous ex-
periment.  

Much future work remains. As we extend to more visual categories, the discrimina-
tive power of the appearance of unordered image patches will not suffice and we will 
need to extend the categorizer to incorporate geometric information. We will also 
need to extend our method for cases where the object of interest occupies a small 
fraction of the field of view, and to investigate many promising alternatives for each 
step of the basic method (point detection, clustering and classification). 
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True classes � faces 
(frontal)

airplanes 
(side) 

cars 
(rear) 

cars 
(side) 

motorbikes 
(side) 

faces(frontal) 94 0.4 0.7 0 1.4 
airplanes (side) 1.5 96.3 0.2 0.1 2.7 

cars (rear) 1.9 0.5 97.7 0 0.9 
cars(side) 1.7 1.9 0.5 99.6 2.3 

motorbikes (side) 0.9 0.9 0.9 0.3 92.7 
Mean ranks 1.07 1.04 1.03 1.01 1.09 
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