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Abstract 1 Introduction
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We study the connection between the highly
non-convex loss function of a simple model of
the fully-connected feed-forward neural net-
work and the Hamiltonian of the spherical
spin-glass model under the assumptions of:
i) variable independence, ii) redundancy in
network parametrization, and iii) uniformity.
These assumptions enable us to explain the
complexity of the fully decoupled neural net-
work through the prism of the results from
random matrix theory. We show that for
large-size decoupled networks the lowest crit-
ical values of the random loss function form
a layered structure and they are located in
a well-defined band lower-bounded by the
global minimum. The number of local min-
ima outside that band diminishes exponen-
tially with the size of the network. We empir-
ically verify that the mathematical model ex-
hibits similar behavior as the computer sim-
ulations, despite the presence of high depen-
dencies in real networks. We conjecture that
both simulated annealing and SGD converge
to the band of low critical points, and that all
critical points found there are local minima
of high quality measured by the test error.
This emphasizes a major difference between
large- and small-size networks where for the
latter poor quality local minima have non-
zero probability of being recovered. Finally,
we prove that recovering the global minimum
becomes harder as the network size increases
and that it is in practice irrelevant as global
minimum often leads to overfitting.
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Deep learning methods have enjoyed a resurgence
of interest in the last few years for such applica-
tions as image recognition [Krizhevsky et al., 2012],
speech recognition [Hinton et al., 2012], and natu-
ral language processing |Weston et al., 2014]. Some
of the most popular methods use multi-stage ar-
chitectures composed of alternated layers of linear
transformations and max function. In a particu-
larly popular version, the max functions are known
as ReLUs (Rectified Linear Units) and compute
the mapping y = max(z,0) in a pointwise fash-
ion [Nair and Hinton, 2010]. In other architectures,
such as convolutional networks [LeCun et al., 1998a]
and maxout networks [Goodfellow et al., 2013], the
max operation is performed over a small set of vari-
able within a layer.

The vast majority of practical applications of deep
learning use supervised learning with very deep net-
works. The supervised loss function, generally a cross-
entropy or hinge loss, is minimized using some form
of stochastic gradient descent (SGD) [Bottou, 199§,
in which the gradient is evaluated using the back-
propagation procedure [LeCun et al., 1998Db].

The general shape of the loss function is very poorly
understood. In the early days of neural nets (late
1980s and early 1990s), many researchers and engi-
neers were experimenting with relatively small net-
works, whose convergence tends to be unreliable, par-
ticularly when using batch optimization. Multilayer
neural nets earned a reputation of being finicky and
unreliable, which in part caused the community to fo-
cus on simpler method with convex loss functions, such
as kernel machines and boosting.

However, several researchers experimenting with larger
networks and SGD had noticed that, while multilayer
nets do have many local minima, the result of mul-
tiple experiments consistently give very similar per-
formance. This suggests that, while local minima are
numerous, they are relatively easy to find, and they
are all more or less equivalent in terms of performance
on the test set. The present paper attempts to explain
this peculiar property through the use of random ma-
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trix theory applied to the analysis of critical points in
high degree polynomials on the sphere.

We first establish that the loss function of a typical
multilayer net with ReLLUs can be expressed as a poly-
nomial function of the weights in the network, whose
degree is the number of layers, and whose number
of monomials is the number of paths from inputs to
output. As the weights (or the inputs) vary, some
of the monomials are switched off and others become
activated, leading to a piecewise, continuous polyno-
mial whose monomials are switched in and out at the
boundaries between pieces.

An important question concerns the distribution of
critical points (maxima, minima, and saddle points)
of such functions. Results from random matrix the-
ory applied to spherical spin glasses have shown that
these functions have a combinatorially large number of
saddle points. Loss surfaces for large neural nets have
many local minima that are essentially equivalent from
the point of view of the test error, and these minima
tend to be highly degenerate, with many eigenvalues
of the Hessian near zero.

We empirically verify several hypotheses regarding
learning with large-size networks:

e For large-size networks, most local minima are
equivalent and yield similar performance on a test
set.

e The probability of finding a “bad” (high value)
local minimum is non-zero for small-size networks
and decreases quickly with network size.

e Struggling to find the global minimum on the
training set (as opposed to one of the many good
local ones) is not useful in practice and may lead
to overfitting.

The above hypotheses can be directly justified by our
theoretical findings. We finally conclude the paper
with brief discussion of our results and future research
directions in Section [6l

We confirm the intuition and empirical evidence ex-
pressed in previous works that the problem of train-
ing deep learning systems resides with avoiding sad-
dle points and quickly “breaking the symmetry” by
picking sides of saddle points and choosing a suit-
able attractor [LeCun et al., 1998b| [Saxe et al., 2014}
Dauphin et al., 2014].

What is new in this paper? To the best of our knowl-
edge, this paper is the first work providing a theo-
retical description of the optimization paradigm with
neural networks in the presence of large number of pa-
rameters. It has to be emphasized however that this
connection relies on a number of possibly unrealistic
assumptions. It is also an attempt to shed light on
the puzzling behavior of modern deep learning systems
when it comes to optimization and generalization.

2 Prior work

In the 1990s, a number of researchers studied
the convergence of gradient-based learning for mul-
tilayer networks using the methods of statistical
physics, i.e. [Saad and Solla, 1995], and the edited
works [Saad, 2009]. Recently, Saxe [Saxe et al., 2014]
and Dauphin [Dauphin et al., 2014] explored the sta-
tistical properties of the error surface in multi-layer
architectures, pointing out the importance of saddle
points.

Earlier theoretical analyses [Baldi and Hornik, 1989|
Wigner, 1958 Fyodorov and Williams, 2007,
Bray and Dean, 2007] suggest the existence of a
certain structure of critical points of random Gaussian
error functions on high dimensional continuous spaces.
They imply that critical points whose error is much
higher than the global minimum are exponentially
likely to be saddle points with many negative and
approximate plateau directions whereas all local
minima are likely to have an error very close to
that of the global minimum (these results are conve-
niently reviewed in [Dauphin et al., 2014]). The work
of [Dauphin et al., 2014] establishes a strong empirical
connection between neural networks and the theory
of random Gaussian fields by providing experimental
evidence that the cost function of neural networks
exhibits the same properties as the Gaussian error
functions on high dimensional continuous spaces.
Nevertheless they provide no theoretical justification
for the existence of this connection which instead we
provide in this paper.

This work is inspired by the recent advances in random
matrix theory and the work of [Auffinger et al., 2010]
and [Auffinger and Ben Arous, 2013]. The authors of
these works provided an asymptotic evaluation of the
complexity of the spherical spin-glass model (the spin-
glass model originates from condensed matter physics
where it is used to represent a magnet with irreg-
ularly aligned spins). They discovered and mathe-
matically proved the existence of a layered structure
of the low critical values for the model’s Hamilto-
nian which in fact is a Gaussian process. Their re-
sults are not discussed in details here as it will be
done in Section H in the context of neural networks.
We build the bridge between their findings and neu-
ral networks and show that the objective function
used by neural network is analogous to the Hamilto-
nian of the spin-glass model under the assumptions
of: i) variable independence, ii) redundancy in net-
work parametrization, and iii) uniformity, and thus
their landscapes share the same properties. We em-
phasize that the connection between spin-glass models
and neural networks was already explored back in the
past (a summary can be found in [Dotsenko, 1995]).
In example in [Amit et al., 1985] the authors showed
that the long-term behavior of certain neural network
models are governed by the statistical mechanism of
infinite-range Ising spin-glass Hamiltonians. Another
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work [Nakanishi and Takayama, 1997] examined the
nature of the spin-glass transition in the Hopfield neu-
ral network model. None of these works however make
the attempt to explain the paradigm of optimizing the
highly non-convex neural network objective function
through the prism of spin-glass theory and thus in this
respect our approach is very novel.

3 Deep network and spin-glass model

3.1 Preliminaries

For the theoretical analysis, we consider a simple
model of the fully-connected feed-forward deep net-
work with a single output and rectified linear units.
We call the network A'. We focus on a binary clas-
sification task. Let X be the random input vector of
dimensionality d. Let (H — 1) denote the number of
hidden layers in the network and we will refer to the
input layer as the 0" layer and to the output layer as
the H®™" layer. Let n; denote the number of units in
the i*" layer (note that ng = d and nyg = 1). Let W;
be the matrix of weights between (i — 1)** and i'" lay-
ers of the network. Also, let o denote the activation
function that converts a unit’s weighted input to its
output activation. We consider linear rectifiers thus
o(z) = max(0,z). We can therefore write the (ran-
dom) network output Y as

Y =qo(Who(Wg_,...o(W, X)))...),

where ¢ = \/(noni..ng)E-D/2H is simply a normal-
ization factor. The same expression for the output of
the network can be re-expressed in the following way:

no Y H &
Y= QZZXMAM kli[l“’z(,j)’ (1)

i=1 j=1

where the first summation is over the network inputs
and the second one is over all paths from a given net-
work input to its output, where  is the total number
of such paths (note that v = ning...ng). Also, for
all 1 = {1,2,. .. ,Tlo}: X7;71 = Xi72 == Xi,'y~ Fur-
thermore, wz(lz) is the weight of the k*" segment of path
indexed with (¢, 7) which connects layer (k — 1) with
layer k of the network. Note that each path corre-
sponds to a certain set of H weights, which we refer to
as a configuration of weights, which are multiplied by
each other. Finally, A;; denotes whether a path (i, j)
is active (A4;; = 1) or not (A4;; = 0).

Definition 3.1. The mass of the network ¥ is the
total number of all paths between all network inputs
and outputs: ¥ = Hio ni. Also let A as A = ¥/,
Definition 3.2. The size of the network N is the total

H-1
number of network parameters: N = Zi:o NiMNit1-

The mass and the size of the network depend on each
other as captured in Theorem [3:I] All proofs in this
paper are deferred to the Supplementary material.

Theorem 3.1. Let VU be the mass of the network, d
be the number of network inputs and H be the depth
of the network. The size of the network is bounded as

U2H = A2HH > N > ”\/\Iﬂ% > VW = A.

We assume the depth of the network H is bounded.
Therefore N — co iff ¥ — oo, and N — oo iff A — cc.

In the rest of this section we will be establishing a con-
nection between the loss function of the neural network
and the Hamiltonian of the spin-glass model. We next
provide the outline of our approach.

3.2 Outline of the approach

In Subsection [B.3] we introduce randomness to the
model by assuming X’s and A’s are random. We
make certain assumptions regarding the neural net-
work model. First, we assume certain distributions
and mutual dependencies concerning the random vari-
ables X'’s and A’s. We also introduce a spherical con-
straint on the model weights. We finally make two
other assumptions regarding the redundancy of net-
work parameters and their uniformity, both of which
are justified by empirical evidence in the literature.
These assumptions will allow us to show in Subsec-
tion that the loss function of the neural network,
after re-indexing termsﬂ has the form of a centered
Gaussian process on the sphere & = S2~1(v/A), which
is equivalent to the Hamiltonian of the H-spin spheri-
cal spin-glass model, given as

A
~ 1 L _
‘CA,H('w) = AHL)/2 ZXihiz,m,inhwiz' Wi, (2)

01,82,..,0 g =1

with spherical constraint

A

1
> o} =1 (3)
=1

The redundancy and uniformity assumptions will be
explained in Subsection [3.3] in detail. However, on
the high level of generality the redundancy assumption
enables us to skip superscript (k) appearing next to
the weights in Equation [1| (note it does not appear
next to the weights in Equation [2) by determining a
set of unique network weights of size no larger than NV,
and the uniformity assumption ensures that all ordered
products of unique weights appear in Equation [2] the
same number of times.

= |

An asymptotic evaluation of the complexity of H-spin

spherical spin-glass models via random matrix theory

'The terms are re-indexed in Subsection [3.31 and
it is done to preserve consistency with the notation
in [Auffinger et al., 2010] where the proofs of the results
of Section can be found.
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was studied in the literature [Auffinger et al., 2010]
where a precise description of the energy landscape
for the Hamiltonians of these models is provided. In
this paper (Section [4]) we use these results to explain
the optimization problem in neural networks.

3.3 Approximation

Input We assume each input X; ; is a normal ran-
dom variable such that X;; ~ N(0,1). Clearly the
model contains several dependencies as one input is as-
sociated with many paths in the network. That poses
a major theoretical problem in analyzing these models
as it is unclear how to account for these dependen-
cies. In this paper we instead study fully decoupled
model [De la Pena and Giné, 1999], where X; ;’s are
assumed to be independent. We allow this simplifica-
tion as to the best of our knowledge there exists no
theoretical description of the optimization paradigm
with neural networks in the literature either under
independence assumption or when the dependencies
are allowed. Also note that statistical learning theory
heavily relies on this assumption [Hastie et al., 2001]
even when the model under consideration is much sim-
pler than a neural network. Under the independence
assumption we will demonstrate the similarity of this
model to the spin-glass model. We emphasize that de-
spite the presence of high dependencies in real neural
networks, both models exhibit high similarities as will
be empirically demonstrated.

Paths We assume each path in Equation [I]is equally
likely to be active thus A;;’s will be modeled as
Bernoulli random variables with the same probabil-
ity of success p. By assuming the independence of X’s
and A’s we get the following

—qZZXJpr““) (4)

=1 j=1

Redundancy in network parametrization Let
W = {wy,wa,...,wx} be the set of all weights of
the network. Let A denote the set of all H-length
configurations of weights chosen from W (order of
the weights in a configuration does matter). Note
that the size of A is therefore N¥. Also let B be
a set such that each element corresponds to the sin-
gle configuration of weights from Equation [ thus
B:{(wilvwila" wfIl) (w%27w%27" w{iZ) ’
(W s Way -+ wHE )}, where every single Welght
comes from set W (note that B C A). Thus Equa-
tion [4] can be equivalently written as

H
21,127 alHwik'
k=1

We will now explain the notation. It is over-
complicated for purpose, as this notation will be useful

Titvin...ig

0y Yk

i1,82,...,0g=1 j=1

YN Z:EA

later on. 7, 4,.... i, denotes whether the configuration

(Wi, , Wiy, - .., w;, ) appears in Equation [4] or not, thus
Tiyin,in € {0U1}, and {XZ(IJ in. };”112 """ " denote

a set of random variables correspondlng to the same
weight configuration (since 7, ;,....i; € {0U1} this set
has at most one element). Also 7, i,, ., = 0 implies

that summand Xl-(f’)h’___’inHkH:l w;, is zeroed out).

Furthermore, the following condition has to be satis-
fied: Zzl'\l[,im...,iﬂ:l Tiyis...in = Y. In the notation
Yy, index N refers to the number of unique weights of
a network (this notation will also be helpful later).

Consider a family of networks which have the same
graph of connections as network A/ but different edge
weighting such that they only have s unique weights
and s < N (by notation analogy the expected out-
put of this network will be called Y;). It was recently
shown [Denil et al., 2013, [Denton et al., 2014] that for
large-size networks large number of network parame-
ters (according to [Denil et al., 2013] even up to 95%)
are redundant and can either be learned from a very
small set of unique parameters or even not learned at
all with almost no loss in prediction accuracy.

Definition 3.3. A network M which has the same
graph of connections as N and s unique weights satis-
fying s < N s called a (s, €)-reduction image of N for
some € € [0,1] if the prediction accuracy of N' and M
differ by no more than € (thus they classify at most €
fraction of data points differently).

Theorem 3.2. Let N be a neural network giving the
output whose expectation Yy is given in Equation [3
Let M be its (s, €)-reduction image for some s < N

and € € [0,0.5]. By analogy, let Y, be the expected
output of network M. Then the following holds
1—-2
corr(sign(Ys), sign(Yy)) > T 2E,
where corr denotes the correlation defined as
corr(A,B) = EMA=BIAINB-EIB)) g4 is the standard

std(A)std(B)
deviation and sign(-) denotes the sign of prediction
(sign(Ys) and sign(Yn) are both random).

The redundancy assumption implies that one can pre-
serve € to be close to 0 even with s << N.

Uniformity Consider the network M to be a (s, €)-
reduction image of A for some s < N and € € [0,1].
The output Y; of the image network can in general be
expressed as

Z Z Z(f») ﬂHprlk’

i1,..0g=1 j=1

where t;, i, € {Z* U0} is the number of times each
configuration (w;, , wi,, . .., w;, ) repeats in Equatlonl
and le ig=1 binyein = — . We assume that unique
weights are close to being evenly distributed on the
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graph of connections of network M. We call this as-
sumption a uniformity assumption. Thus this assump-
tion implies that for all (i1,42,...,05) : 41,%2,-..,ig €

{1,2,...,s} there exists a positive constant ¢ > 1 such
that the following holds

1 v 1\

E : SiH S til,iQ,...,iH S (& SH' (6)

The factor % comes from the fact that for the net-
work where every weight is uniformly distributed on
the graph of connections (thus with high probability
every node is adjacent to an edge with any of the
unique weights) it holds that ¢;, 4, ., = —. For

11,92, H
simplicity assume — € Z* and VW € Z*. Consider
therefore an expression as follows

Yszq Z Z 21, mpl_[w“c7 (7)

ig=1j=1

which corresponds to a network for which the lower-
bound and upper-bound in Equation [] match. Note
that one can combine both summations in Equation [7]
and re-index its terms to obtain

? = }A/(SZA) = q Z le, i P H Wiy, - (8)

ctg=1

The following theorem (Theorem [3.3) captures the
connection between )A/'S and Y.

Theorem 3.3. Under the uniformity assumption of
Equation random variable Yy in FEquation |7 and
random variable Y in Equation [5 satisfy the follow-
ing: corr(Ys,Yy) > &

Spherical constraint We finally assume that for
some positive constant C weights satisfy the spherical

condition
1A
n > wi=c. (9)
i=1

Next we will consider two frequently used loss func-
tions, absolute loss and hinge loss, where we approxi-

mate Yy (recall Yy := E4[Y]) with V.

3.4 Loss function as a H-spin spherical
spin-glass model

Let £4 y(w) and L} ;(w) be the (random) absolute
loss and (random) hinge loss that we define as follows

LY g(w) =Eal Y, = Y]]

and
EZ,H(U’)

where Y; is a random variable corresponding to the
true data labeling that takes values —S or S in case of

= E4[max(0,1 — Y;Y)],

the absolute loss, where S = sup,, Y, and —1 or 1 in
case of the hinge loss. Also note that in the case of the
hinge loss max operator can be modeled as Bernoulli
random variable, which we assume is independent of
Y. Given that one can show that after approximating
EA[Y] with ¥ both losses can be generalized to the
following expression

A

C1+Caq Z

117i2,...,iH:1

La,n(w) =

H
Xiinyein H Wi
k=1

and C1, Cy are some constants and Weights w are sim-
ply scaled weights w satisfying + % ZZ Jwi =1 In
case of the absolute loss the term Y; is incorporated
into the term Cy, and in case of the hinge loss it van-
ishes (note that Y is a symmetric random quantity
thus multiplying it by Y; does not change its distri-
bution). We skip the technical details showing this
equivalence, and defer them to the Supplementary ma-
terial. Note that after simplifying the notation by i)
dropping the letter accents and simply denoting w as
w, ii) skipping constants C; and C2 which do not mat-
ter when minimizing the loss function, and iii) sub-
stituting ¢ = ‘II(H}WQH = A(HL)/Q, we obtain the
Hamiltonian of the H-spin spherical spin-glass model
of Equation [2| with spherical constraint captured in
Equation

4 Theoretical results

In this section we use the results of the theoretical
analysis of the complexity of spherical spin-glass mod-
els of [Auffinger et al., 2010] to gain an understanding
of the optimization of strongly non-convex loss func-
tions of neural networks. These results show that for
high-dimensional (large A) spherical spin-glass models
the lowest critical values of the Hamiltonians of these
models form a layered structure and are located in a
well-defined band lower-bounded by the global mini-
mum. Simultaneously, the probability of finding them
outside the band diminishes exponentially with the di-
mension of the spin-glass model. We next present the
details of these results in the context of neural net-
works. We first introduce the notation and definitions.

Definition 4.1. Let u € R and k be an integer such
that 0 < k < A. We will denote as Cp k(u) a random
number of critical values of Lx g(w) in the set AB =
{AX : x € (—oo,u)} with index’| equal to k. Similarly
we will denote as Cp(B) a random total number of
critical values of L m(w).

Later in the paper by critical values of the loss function
that have non-diverging (fixed) index, or low-index, we
mean the ones with index non-diverging with A.

2The number of negative eigenvalues of the Hessian

VQLZA,H at w is also called index of VQLZA,H at w.
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The existence of the band of low-index crit-
ical points Omne can directly use Theorem 2.12
in [Auffinger et al., 2010] to show that for large-size
networks (more precisely when A — oo but recall that
A — o0 iff N — 00) it is improbable to find a critical
value below certain level —AFEy(H) (which we call the
ground state), where Eq(H) is some real number.

Let us also introduce the number that we will refer to
as Fo. We will refer to this important threshold as
the energy barrier and define it as

H-1

H

Theorem 2.14 in [Auffinger et al., 2010] implies that
for large-size networks all critical values of the loss
function that are of non-diverging index must lie be-
low the threshold —AE.(H). Any critical point that
lies above the energy barrier is a high-index saddle
point with overwhelming probability. Thus for large-
size networks all critical values of the loss function

that are of non-diverging index must lie in the band
(_AEO(H)7 _AEOO(H))

Layered structure of low-index critical points
From Theorem 2.15 in [Auffinger et al., 2010] it fol-
lows that for large-size networks finding a critical value
with index larger or equal to k (for any fixed inte-
ger k) below energy level —AE)(H) is improbable,
where —Ey(H) € [-Eo(H), —Ex(H)]. Furthermore,
the sequence {Fy(H)}ren is strictly decreasing and
converges to Ey, as k — oo [Auffinger et al., 2010].

Foo = Eoo(H) =2

These results unravel a layered structure for the low-
est critical values of the loss function of a large-
size network, where with overwhelming probability
the critical values above the global minimum (ground
state) of the loss function are local minima exclusively.
Above the band ((—AEz(H),—AE;(H))) containing
only local minima (critical points of index 0), there
is another one, ((—=AE;(H),—AFE(H))), where one
can only find local minima and saddle points of in-
dex 1, and above this band there exists another one,
((~AEy(H),—AFE3(H))), where one can only find lo-
cal minima and saddle points of index 1 and 2, and so
on.

Logarithmic asymptotics of the mean number
of critical points We will now define two non-
decreasing, continuous functions on R, Oy and O g
(their exemplary plots are captured in Figure .

(H—2)u?

1log(H—1)— ;=25

TH-T) ifu>—F

On(u) = Hog(H-1)- Y72 if ~Ex<u<0
ilog(H — 1) if 0<u

and for any integer k£ > 0:
1 1y (H—2)u2 _ : _

O gt (1) = {210g(H 1) o0 ) (k4+1)I(u) if u<—Fo

)

where
u 252 ] T_E2 4]
I(u) =gz Vu —E2 —log(—u++/u?—E2))+log Ew.
oo
Function OH(U) Function ek H(u)
0.3)---"E, : ‘
_-E : 0
- 0.2 in - p——
2 o1 2. -0.02 k=1
10 ‘ 7 —k=2
‘ o] _
of / : -0.04 —k=3
: : k=4
-0/ ? ~0.06 ; k=5
-15 -1 -05 0 S168 -166 -1.64

u

u
Figure 2: Functions Opy(u) and O g(u) for k =

{0,1,...,5}. Parameter H was set to H = 3. Black
line: u = —Ey(H), red line: u = —FE(H). Figure
must be read in color.

Also note that the following corollary holds.
Corollary 4.1. For all k > 0 and v < —FE,

@k,H(u) < @07H(u).

Next we will show the logarithmic asymptotics of the
mean number of critical points (the asymptotics of the
mean number of critical points can be found in the
Supplementary material).

Theorem 4.1 ([Auffinger et al., 2010], Theorem 2.5
and 2.8). For all H > 2

. 1
Jim = log E[CA (u)] = O (u).
and for all H > 2 and k > 0 fized

. 1
Algrgo 1 log ]E[CAJC(U)] = ek,H(U)-

From Theorem and Corollary the number of
critical points in the band (—AEy(H), —AE(H)) in-
creases exponentially as A grows and that local minima
dominate over saddle points and this domination also
grows exponentially as A grows. Thus for large-size
networks the probability of recovering a saddle point
in the band (—AE(H),—AE.(H)), rather than a lo-
cal minima, goes to 0.

Figure [I| captures exemplary plots of the distribu-
tions of the mean number of critical points, local min-
ima and low-index saddle points. Clearly local min-
ima and low-index saddle points are located in the
band (—=AEy(H), —AE (H)) whereas high-index sad-
dle points can only be found above the energy barrier
—AE(H). Figure [l] also reveals the layered struc-
ture for the lowest critical values of the loss functionf’]
This ’geometric’ structure plays a crucial role in the
optimization problem. The optimizer, e.g. SGD, eas-
ily avoids the band of high-index critical points, which

3The large mass of saddle points above —AFE, is a con-
sequence of Theorem and the properties of © functions.
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5w |—-AE : = TE
Béé. AElnf Em 25 —k=2 Eg 2 %8 2|
£87 B E 15! k=3 S 915 5415
3% | B g i k=4 5E -
L | — H = o o =
s EE i k=5 Es 1 £8 1
o © 2= H --N\E, 2 55
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Figure 1: Distribution of the mean number of critical points, local minima and low-index saddle points (original
and zoomed). Parameters H and A were set to H = 3 and A = 1000. Black line: v = —AFEy(H), red line:

u=—AFE.(H). Figure must be read in color.

have many negative curvature directions, and descends
to the band of low-index critical points which lie closer
to the global minimum. Thus finding bad-quality so-
lution, i.e. the one far away from the global minimum,
is highly unlikely for large-size networks.

Hardness of recovering the global minimum
Note that the energy barrier to cross when starting
from any (local) minimum, e.g. the one from the band
(=AE;(H),—AFE;11(H)), in order to reach the global
minimum diverges with A since it is bounded below
by A(Ey(H) — E;(H)). Furthermore, suppose we are
at a local minima with a scaled energy of —E,, — 6.
In order to find a further low lying minimum we must
pass through a saddle point. Therefore we must go up
at least to the level where there is an equal amount
of saddle points to have a decent chance of finding a
path that might possibly take us to another local mini-
mum. This process takes an exponentially long time so
in practice finding the global minimum is not feasible.

Note that the variance of the loss in Equation [2| is
A which suggests that the extensive quantities should
scale with A. In fact this is the reason behind the
scaling factor in front of the summation in the loss.
The relation to the logarithmic asymptotics is as fol-
lows: the number of critical values of the loss below
the level Au is roughly eA®# (%) The gradient descent
gets trapped roughly at the barrier denoted by —AF,
as will be shown in the experimental section.

5 Experiments

The theoretical part of the paper considers the prob-
lem of training the neural network, whereas the em-
pirical results focus on its generalization properties.

5.1 Experimental Setup

Spin-Glass To illustrate the theorems in Section 4,
we conducted spin-glass simulations for different di-
mensions A from 25 to 500. For each value of A, we
obtained an estimate of the distribution of minima by
sampling 1000 initial points on the unit sphere and
performing stochastic gradient descent (SGD) to find
a minimum energy point. Note that throughout this
section we will refer to the energy of the Hamiltonian

of the spin-glass model as its loss.

Neural Network We performed an analogous ex-
periment on a scaled-down version of MNIST, where
each image was downsampled to size 10 x 10. Specifi-
cally, we trained 1000 networks with one hidden layer
and ny € {25,50, 100,250,500} hidden units (in the
paper we also refer to the number of hidden units as
nhidden), each one starting from a random set of pa-
rameters sampled uniformly within the unit cube. All
networks were trained for 200 epochs using SGD with
learning rate decay.

To verify the validity of our theoretical assumption of
parameter redundancy, we also trained a neural net-
work on a subset of MNIST using simulated annealing
(SA) where 95% of parameters were assumed to be re-
dundant. Specifically, we allowed the weights to take
one of 3 values uniformly spaced in the interval [—1, 1].
We obtained less than 2.5% drop in accuracy, which
demonstrates the heavy over-parametrization of neural
networks as discussed in Section [3l

Index of critical points It is necessary to ver-
ify that our solutions obtained through SGD are
low-index critical points rather than high-index
saddle points of poor quality. As observed by
[Dauphin et al., 2014] certain optimization schemes
have the potential to get trapped in the latters. We ran
two tests to ensure that this was not the case in our
experimental setup. First, for n; = {10,25,50, 100}
we computed the eigenvalues of the Hessian of the loss
function at each solution and computed the index. All
eigenvalues less than 0.001 in magnitude were set to 0.
Figure[d] captures an exemplary distribution of normal-
ized indices, which is the proportion of negative eigen-
values, for n; = 25 (the results for n; = {10,50,100}
can be found in the Supplementary material). It can
be seen that all solutions are either minima or sad-
dle points of very low normalized index (of the order
0.01). Next, we compared simulated annealing to SGD
on a subset of MNIST. Simulated annealing does not
compute gradients and thus does not tend to become
trapped in high-index saddle points. We found that
SGD performed at least as well as simulated annealing,
which indicates that becoming trapped in poor saddle
points is not a problem in our experiments. The result
of this comparison is in the Supplementary material.
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Figure 3: Distributions of the scaled test losses for the spin-glass (left) and the neural network (right) experiments.
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Scaling loss values To observe qualitative differ-
ences in behavior for different values of A or nq, it is
necessary to rescale the loss values to make their ex-
pected values approximately equal. For spin-glasses,
the expected value of the loss at critical points scales
linearly with A, therefore we divided the losses by A
(note that this normalization is in the statement of
Theorem which gave us the histogram of points
at the correct scale. For MNIST experiments, we em-
pirically found that the loss with respect to number
of hidden units approximately follows an exponential

power law: E[L] x e | We fitted the coefficients a, B
and scaled the loss values to L/ ent.

5.2 Results

Figure 3 shows the distributions of the scaled test
losses for both sets of experiments. For the spin-glasses
(left plot), we see that for small values of A, we ob-
tain poor local minima on many experiments, while
for larger values of A the distribution becomes increas-
ingly concentrated around the energy barrier where lo-
cal minima have high quality. We observe that the left
tails for all A touches the barrier that is hard to pene-
trate and as A increases the values concentrate around
—F. In fact this concentration result has long been
predicted but not proved until [Auffinger et al., 2010].
We see that qualitatively the distribution of losses for
the neural network experiments (right plot) exhibits
similar behavior. Even after scaling, the variance de-
creases with higher network sizes. This is also clearly
captured in Figure [§] and [9]in the Supplementary ma-

terial. This indicates that getting stuck in poor lo-
cal minima is a major problem for smaller networks
but becomes gradually of less importance as the net-
work size increases. This is because critical points
of large networks exhibit the layered structure where
high-quality low-index critical points lie close to the
global minimum.

5.3 Relationship between train and test loss

ny 25
p | 0.7616

50
0.6861

100
0.5983

250
0.5302

500
0.4081

Table 1: Pearson correlation between training and test
loss for different numbers of hidden units.

The theory and experiments thus far indicate that
minima lie in a band which gets smaller as the network
size increases. This indicates that computable solu-
tions become increasingly equivalent with respect to
training error, but how does this relate to error on the
test set? To determine this, we computed the correla-
tion p between training and test loss for all solutions
for each network size. The results are captured in Ta-
ble [If and Figure [7| (the latter is in the Supplementary
material). The training and test error become increas-
ingly decorrelated as the network size increases. This
provides further indication that attempting to find the
absolute possible minimum is of limited use with re-
gards to generalization performance.

6 Conclusion

This paper establishes a connection between the neural
network and the spin-glass model. We show that under
certain assumptions, the loss function of the fully de-
coupled large-size neural network of depth H has simi-
lar landscape to the Hamiltonian of the H-spin spheri-
cal spin-glass model. We empirically demonstrate that
both models studied here are highly similar in real set-
tings, despite the presence of variable dependencies in
real networks. To the best of our knowledge our work
is one of the first efforts in the literature to shed light
on the theory of neural network optimization.
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The Loss Surfaces of Multilayer
Networks
(Supplementary Material)

7 Proof of Theorem [3.1]

Proof. First we will prove the lower-bound on N. By
the inequality between arithmetic and geometric mean
the mass and the size of the network are connected as
follows

H H
N> ViI2—— = V2,
N/nong Vd

and since WHL\/E = H\/Hle n;H > 1 then

Nz Y Y
vd
Next we show the upper-bound on N. Let nq, =
maXe (1,2, H} M- Then

N < Hn?

max

< HU2,

8 Proof of Theorem [3.2

Proof. We will first proof the following more general
lemma.

Lemma 8.1. Let Y7 and Ys be the outputs of two ar-
bitrary binary classifiers. Assume that the first clas-
sifiers predicts 1 with probability p where, without loss
of generality, we assume p < 0.5 and —1 otherwise.
Furthemore, let the prediction accuracy of the second
classifier differ from the prediction accuracy of the first
classifier by no more than € € [0,p]. Then the follow-
ing holds
corr(sign(Yr), sign(Ys))

_ 1—=2c—(1—2p)* — 2(1 — 2p)e
4/pA=p)p+e)(I—p+e)

Proof. Consider two random variables Z; = sign(Y7)
and Zs = sign(Y2). Let XT denote the set of data
points for which the first classifier predicts +1 and let
X~ denote the set of data points for which the first
classifier predicts —1 (Xt UX~ = X, where X is the

entire dataset). Also let p = HXTT Furthermore, let
X denote the dataset for which Z; = +1 and Z; =
—1 and X" denote the dataset for which Z; = —1 and

Zy = 41, where % =c¢€ Also let e = I/’gl
and e~ = Q Therefore
g 1ifze Xt
T ifre X
and
g 1ifzextuxr\x-
2711 ifze X UXT\ ALY
One can compute that E[Z;] = 2p — 1, E[Zy] =
20 + €7 — €) — 1, E[Z1Z] = 1 — 2

std(Zs) = 24p(l1—p), and finally std(Z)) =
2y/(p+ et —e)(1 —p— et + e ). Thus we obtain
corr(sign(Yy), sign(Y3)) = corr(Z1, Zs)
E[Z1Z5) — E[Z,|E[Z,]
Std(Zl)Std(ZQ)

_ 12— (1-2p)? +2(1—2p)(e" —€)
4/p(L=p)lp+et —e )1 -p—ef +¢7)
1—2e—(1—2p)? —2(1 —2p)e

4/p(L=p)p+e)(T—p+e)

(10)

O

Note that when the first classifier is network A/ consid-
ered in this paper and M is its (s, €)-reduction image
E[Y1] = 0 and E[Y3] = 0 (that follows from the fact
that X’s in Equation have zero-mean). That implies
p = 0.5 which, when substituted to Equation [10| gives
the theorem statement. O

9 Proof of Theorem [3.3

Proof. Note that E[Y,] = 0 and E[Y;] = 0. Further-
more
s U H
]E[YSYS} = q2p2 Z min <5Hyti1,i2,...,iH) ’UJZ‘Z,c
11,92, 0 g =1 k=1

and

std(Y) =qp,| Y

i1 y02, i =1 k=1

H
2
tiuiz,---,iH H w;, -
k=1

S

std(Ys) = qp >

11,02,..,0g=1
Therefore
corr(Ys, Ys)
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where the last inequality is the direct consequence of
the uniformity assumption of Equation [6] O]

10 Loss function as a H - spin
spherical spin-glass model

We consider two loss functions, (random) absolute loss
L y(w) and (random) hinge loss £} ;; (w) defined in
the main body of the paper. Recall that in case of the
hinge loss max operator can be modeled as Bernoulli
random variable, that we will refer to as M, with suc-

cess (M = 1) probability p = pcﬁ for some non-

negative constant C'. We assume M is independent of
Y. Therefore we obtain that

@ (w) = S—Y if v, =S5
A S+Y if V,=-S

and

ﬁZ,H('w) = Ena[M(1-YY)]
_ {EM[M(lYﬂ if V=1
| En[MA+Y)] i Yi=-

Note that both cases can be generalized as

En[M(S —Y))

if Y,>0
Lanlw) = { En[M(S + V)]

if Y,<0 '’

where in case of the absolute loss p, = 1 and in case of
the hinge loss S = 1. Furthermore, using the fact that
X’s are Gaussian random variables one we can further
generalize both cases as

Lam(w) = Sp +¢

Z Xiyinyoin PP kuc

11,82, 0 H=1

Let @; = 4§/ w; for all i = {1,2, ...,

k}. Note that

c
w; = %wz Thus
Lo n(w)= Sp + qC Z Kiy,ooyin H Wi, -

’LHl

Note that the spherical assumption in Equation [9] di-
rectly implies that

(i

To simplify the notation in Equation we drop the
letter accents and simply denote w as w. We skip con-
stant S pl and C' as it does not matter when minimizing
the loss function. After substituting g = W we
obtain

> \

1 A
NED)2 E Xisigsoni Wi Wine Wiy -

i1 in,..ig=1

Ly, g (w)=

11 Asymptotics of the mean number
of critical points and local minima

Below, we provide the asymptotics of the mean
number of critical points (Theorem and the
mean number of local minima (Theorem ,
which extend Theorem Il Those results are
the consequences of Theorem 2.17.
2.18. [Auffinger et al., 2010].

Theorem 11.1. For H > 3, the following holds as
A — oo

and Corollary

o Foru< —FEy

2HT

where v = fu,/iﬂjf_l), d(v) = ——g;va,
1

h(v) = 5;—\}‘4 s
and I (v f\f\/x — 2|dx.
o foru=—F
2A(0)V2H , _1
ECa(u)] = Z2OV2H -

3(H —2)
~exp (AOp (u)) (1 +o(1)),

where A is the Airy function of first kind.
e Foru € (—Ey,0)
 2\2H(EZ — &)
E[Ca(w)] = (2— H)ru
-exp (ABx (u)) (14 0(1)),

e Foru>0
o2
BlCa ()] = s
-exp (A®g(0)) (1 + o(1)),

Theorem 11.2. For H > 3 and u < —FE,, the fol-
lowing holds as A — oo:

ElCa,0(u)] =

where v, ®, h and I were defined in Theorem [I1.1}



The Loss Surfaces of Multilayer Networks

12 Additional Experiments

12.1 Distribution of normalized indices of
critical points.

Figure |5| shows the distribution of normalized indices,
which is the proportion of negative eigenvalues, for
neural networks with ny = {10,25,50,100}. We see
that all solutions are minima or saddle points of very
low index.
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Figure 5: Distribution of normalized index of solutions
for ny = {10, 25,50,100} hidden units.

12.2 Comparison of SGD and SA.
Figure [6] compares SGD with SA.
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Figure 6: Test loss distributions for SGD and SA for
different numbers of hidden units (nh).

12.3 Distributions of the scaled test losses

125+
100- Lambda
25
75- 50
IS 100
3 200
© 50- 300
| 400
500
25-
0- .JH it i ) )
-1.6 -15 -1.4 -1.3
loss
nhidden
40 25
€ 50
>
3 100
250
204 500

Mmm |

loss
Figure 8: Distributions of the scaled test losses for the
spin-glass (with A = {25, 50,100, 200, 300, 400, 500})
(top) and the mneural network (with n; =
{25, 50,100, 250,500}) (bottom) experiments.

0.09 0.10

Figure |8 shows the distributions of the scaled test
losses for the spin-glass experiment (with A =
{25, 50, 100, 200, 300, 400,500}) and the neural net-
work experiment (with ny = {25, 50,100, 250,500} ).
Figure [J] captures the boxplot generated based on the
distributions of the scaled test losses for the neural net-
work experiment (for n, = {10, 25,50, 100,250, 500})
and its zoomed version (for ny = {10,25,50,100}).
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Figure 7: Test loss versus train loss for networks with different number of hidden units n;.
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Figure 9: Top: Boxplot generated based on the distri-
butions of the scaled test losses for the neural network
experiment, Bottom: Zoomed version of the same
boxplot for n; = {10, 25,50, 100}.

Figure shows the mean value and the variance of
the test loss as a function of the number of hidden
units.
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Figure 10: Mean value and the variance of the test loss
as a function of the number of hidden units.

12.4 Correlation between train and test loss

Figure [7] captures the correlation between training and
test loss for networks with different number of hidden
units nq.
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