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ABSTRACT

While depth tends to improve network performances, it ala&es gradient-based
training more difficult since deeper networks tend to be nmane-linear. The re-
cently proposed knowledge distillation approach is aimesb#aining small and
fast-to-execute models, and it has shown that a studenbrietuld imitate the
soft output of a larger teacher network or ensemble of nddsvoin this paper,
we extend this idea to allow the training of a student thateispeer and thinner
than the teacher, using not only the outputs but also thenediate represen-
tations learned by the teacher as hints to improve the trgiprocess and final
performance of the student. Because the student intertedu@dden layer will
generally be smaller than the teacher’s intermediate hidalger, additional pa-
rameters are introduced to map the student hidden layeetprédiction of the
teacher hidden layer. This allows one to train deeper stsdbat can generalize
better or run faster, a trade-off that is controlled by thesgn student capacity.
For example, on CIFAR-10, a deep student network with alrhfst times less
parameters outperforms a larger, state-of-the-art teaate/ork.

1 INTRODUCTION

Deep networks have recently exhibited state-of-the-affopmance in computer vision tasks such
as image classification and object detection (Simonyan &efiman, 2014; Szegedy et al., 2014).
However, top-performing systems usually involve vevigle and deep networks, with numerous
parameters. Once learned, a major drawback of such wide @el mhodels is that they result
in very time consuming systems at inference time, since tlesd to perform a huge number of
multiplications. Moreover, having large amounts of par@rgemakes the models high memory
demanding. For these reasons, wide and deep top-perfomeitngprks are not well suited for
applications with memory or time limitations.

There have been several attempts in the literature to tabkl@roblem of model compression to
reduce the computational burden at inference time._In Buatil. (2006), authors propose to train
a neural network to mimic the output of a complex and largesnide. The method uses the ensem-
ble to label unlabeled data and trains the neural netwotk thé data labeled by the ensemble, thus
mimicking the function learned by the ensemble and achgsimilar accuracy. The idea has been
recently adopted in Ba & Caruana (2014) to compress deep a@nvetworks into shallower but
even wider ones, where the compressed model mimics thddarieairned by the complex model, in
this case, by using data labeled by a deep (or an ensemblepf detworks. More recently, Knowl-
edge Distillation (KD) ((Hinton & Deén, 2014) was introducasla model compression framework,
which eases the training of deep networks by following a etitdeacher paradigm, in which the
student is penalized according to a softened version ofghehier’s output. The framework com-
presses an ensemble of deep netwotdacher) into a student network ofsimilar depth. To do so,
the student is trained to predict the output of the teaclseredl as the true classification labels. All
previous works related to Convolutional Neural Networksu® on compressing a teacher network
or an ensemble of networks into either networks of similadttviand depth or into shallower and
wider ones; not taking advantage of depth.
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Depth is a fundamental aspect of representation learning, stresecourages the re-use of features,
and leads to more abstract and invariant representatidrigtzr layers|(Bengio et al., 2013). The
importance of depth has been verified (1) theoreticallypdepresentations are exponentially more
expressive than shallow ones for some families of functimntufar et al., 2014); and (2) empiri-
cally: the two top-performers of ImageNet use deep coniahal networks with 19 and 22 layers,
respectively/(Simonyan & Zisserman, 2014) and (Szegedy, &CGi14).

Nevertheless, training deep architectures has proven tohbtenging |(Larochelle et al., 2007;
Erhan et al., 2009), since they are composed of successiinearities and, thus result in highly
non-convex and non-linear functions. Significant efford baen devoted to alleviate this optimiza-
tion problem. On the one hand, pre-training strategies thdrainsupervised (Hinton etlal., 2006;
Bengio et all, 2007) or supervised (Bengio et al., 2007h ¢ network parameters in a greedy lay-
erwise fashion in order to initialize the network parametara potentially good basin of attraction.
The layers are trained one after the other according to amnmgdiate target. Similarly, semi-
supervised embedding (Weston etlal., 2008) provides gaalarnan intermediate layer to help learn
very deep networks. Along this line of reasoning, (Cho ¢124112) ease the optimization problem
of DBM by borrowing the activations of another model evergaal layer in a purely unsupervised
scenario. More recently, (Chen-Yu et al., 2014; Szegedl/,e2@14;| Gulcehre & Bengio, 2013)
showed that adding supervision to intermediate layers epdechitectures assists the training of
deep networks. Supervision is introduced by stacking arsigesl MLP with a softmax layer on top
of intermediate hidden layers to ensure their discrimilitghi.r.t. labels. Alternatively, Curriculum
Learning strategies (CL) (Bengio, 2009) tackle the optatian problem by modifying the training
distribution, such that the learner network gradually ieeeexamples of increasing and appropriate
difficulty w.r.t. the already learned concepts. As a resuitriculum learning acts like a continuation
method, speeds up the convergence of the training procddsas potentially better local minima
of highly non-convex cost functions.

In this paper, we aim to address the network compressiongroby taking advantage of depth.
We propose a novel approach to tréim anddeep networks, calledritNets, to compressvide and
shallower (but stilldeep) networks. The method is rooted in the recently proposedienige Dis-
tillation (KD) (Hinton & Dean,/2014) and extends the idea tiow for thinner and deeper student
models. We introductermediate-level hints from the teacher hidden layers to guide the training
process of the studentge., we want the student network (FitNet) to learn an intermtediapre-
sentation that is predictive of the intermediate repreg@nts of the teacher network. Hints allow
the training of thinner and deeper networks. Results cortfi@hhaving deeper models allow us to
generalize better, whereas making these models thin helpduge the computational burden sig-
nificantly. We validate the proposed method on MNIST, CIFAR-CIFAR-100, SVHN and AFLW
benchmark datasets and provide evidence that our methathesabr outperforms the teacher’s
performance, while requiring notably fewer parametersraottiplications.

2 METHOD

In this section, we detail the proposed student-teacherdveork to train FitNets from shallower
and wider nets. First, we review the recently proposed K2o8d, we highlight the proposed hints
algorithm to guide the FitNet throughout the training presceFinally, we describe how the FitNet
is trained in a stage-wise fashion.

2.1 REVIEW OF KNOWLEDGEDISTILLATION

In order to obtain a faster inference, we explore the regegmbposed compression framework
(Hinton & Dean| 2014), which trainsstudent network, from the softened output of an ensemble of
wider networksteacher network. The idea is to allow the student network to capture not omdy t
information provided by the true labels, but also the finewcttire learned by the teacher network.
The framework can be summarized as follows.

Let T be a teacher network with an output softnfax = softmax(ar) whereay is the vector of
teacher pre-softmax activations, for some example. In dse evhere the teacher model is a single
network,ar represents the weighted sums of the output layer, wherehs teacher model is the
result of an ensemble eith® or ar are obtained by averaging outputs from different networks
(respectively for arithmetic or geometric averaging). Bdte a student network with parameters
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Wy and output probabilitfPs = softmax(ag), whereag is the student’s pre-softmax output. The
student network will be trained such that its outputis similar to the teacher’s outpitr, as well
as to the true labelg,,,.. SincePt might be very close to the one hot code representation of the
sample’s true label, a relaxatian> 1 is introduced to soften the signal arising from the output
of the teacher network, and thus, provide more informatiaring trainingl. The same relaxation
is applied to the output of the student netwoB¢), when it is compared to the teacher's softened
output P7.):

PT = softmax (a—T) , P& = softmax (a_s) . 1)

T T

The student network is then trained to optimize the follaplmss function:

EKD(WS) = H(ytruevPS) + /\H( %a Pg)v (2)

whereH refers to the cross-entropy ands a tunable parameter to balance both cross-entropies.
Note that the first term in Egl(2) corresponds to the tradél@ross-entropy between the output of

a (student) network and labels, whereas the second termcesfthe student network to learn from
the softened output of the teacher network.

To the best of our knowledge, KD is designed such that stutstatorks mimic teacher architectures
of similar depth. Although we found the KD framework to aaldencouraging results even when
student networks have slightly deeper architectures, asarease the depth of the student network,
KD training still suffers from the difficulty of optimizingekep nets (see Sectibn}4.1).

2.2 HINT-BASED TRAINING

In order to help the training of deep FitNets (deeper thair teacher), we introduckints from the
teacher network. Aint is defined as the output of a teacher’s hidden layer resplerfsibguiding
the student’s learning process. Analogously, we choos&@ehilayer of the FitNet, thguided
layer, to learn from the teacher’s hint layer. We want thelgdilayer to be able to predict the output
of the hint layer. Note that having hints is a form of reguation and thus, the pair hint/guided
layer has to be chosen such that the student network is notregelarized. The deeper we set the
guided layer, the less flexibility we give to the network atitrefore, FitNets are more likely to
suffer from over-regularization. In our case, we chooséhtheto be the middle layer of the teacher
network. Similarly, we choose the guided layer to be the teittdyer of the student network.

Given that the teacher network will usually be wider than Eitdlet, the selected hint layer may
have more outputs than the guided layer. For that reasonddie aegressor to the guided layer,
whose output matches the size of the hint layer. Then, we tha FitNet parameters from the first
layer up to the guided layer as well as the regressor parasnafeminimizing the following loss
function:

1
LT (W Guided, Wr) = §||Uh(x§ Whiint) — 7(vg(X; WGuided); Wr)||?, (3

wherew;, andv, are the teacher/student deep nested functions up to tisgiectve hint/guided
layers with paramete™V gine andW quided, 7 IS the regressor function on top of the guided layer
with parameterdV,.. Note that the outputs af;, andr have to be comparablege., u; andr must

be the same non-linearity.

Nevertheless, using a fully-connected regressor inceghsanumber of parameters and the memory
consumption dramatically in the case where the guided artdayiers are convolutional. L&Y, ; x

Nj,2 andOy, be the teacher hint’s spatial size and number of channeigectively. Similarity, let
Ng,1 x Ny 2 andO, be the FitNet guided layer’s spatial size and number of chsniThe number of
parameters in the weight matrix of a fully connected regreisNj, 1 XNy, 2 xOp, XNy 1 xNg o xO,.

To mitigate this limitation, we use a convolutional regasisistead. The convolutional regressor
is designed such that it considers approximately the samaspegion of the input image as the
teacher hint. Therefore, the output of the regressor hasdhee spatial size as the teacher hint.
Given a teacher hint of spatial si?g, 1 x Ny, o, the regressor takes the output of the Fitnet’s guided

1For example, as argued by Hinton & Dean (2014), with softemetputs, more information is provided
about the relative similarity of the input to classes otlhantthe one with the highest probability.



Published as a conference paper at ICLR 2015

Teacher Network FitNet

: W gee= AEMIN LHT We,,,, W) w, = argmin £pr (W)

Wauided Wsg

l t

(a) Teacher and Student Networks (b) Hints Training (c) Knowledge Distillation

Figure 1: Training a student network using hints.

layer of sizeN, ; x N,y o and adapts its kernel shape x ko, such thatN, ; — k; + 1 = Ny,
wherei € {1,2}. The number of parameters in the weight matrix of a the carianal regressor is
ki x ko x Op x Og4, wherek; x ko is significantly lower thaiN, ; x Nj 2 x Ng 1 X Ny 2.

2.3 HTNET STAGE-WISE TRAINING

We train the FitNet in a stage-wise fashion following thedstt/teacher paradigm. Figure 1 sum-
marizes the training pipeline. Starting from a trained esimetwork and a randomly initialized
FitNet (Fig.[1 (a)), we add a regressor parameterize8gyon top of the FitNet guided layer and
train the FitNet paramete®/ cuidea UP t0 the guided layer to minimize Ed.] (3) (see Hig. 1 (b)).
Finally, from the pre-trained parameters, we train the paters of whole FitNeW g to minimize
Eq. [2) (see Fid.]1 (c)). Algorithid 1 details the FitNet tiamprocess.

Algorithm 1 FitNet Stage-Wise Training.

The algorithm receives as input the trained paramé®éss of a teacher, the randomly initialized
parameter®dVg of a FitNet, and two indiced andg corresponding to hint/guided layers, respec-
tively. Let Wyt be the teacher’'s parameters up to the hint laydret W guigeq be the FitNet's
parameters up to the guided layeiet W, be the regressor’s parameters. The first stage consists in
pre-training the student network up to the guided layerebam the prediction error of the teacher’s
hint layer (line 4). The second stage is a KD training of thelemetwork (line 6).

Input: Ws, Wr,g,h
Output: W
: WHint < {WTl, L. ,WTh}
Wuided + {Ws', ..., Wg?}
. Intialize W, to small random values
Wauided — argmin Lyt (WGuided7Wr)
WGuided
{Wsh, ... W)+ {Wauidea™, - - -, Wauidea ™ }
W3 < argmin Lxp(Ws)
Wg

Q0 AwdhE

2.4 RELATION TO CURRICULUM LEARNING

In this section, we argue that our hint-based training with &an be seen as a particular form of
Curriculum Learningl(Bengia, 2009). Curriculum learningshproven to accelerate the training
convergence as well as potentially improve the model géimatisn by properly choosing a se-
guence of training distributions seen by the learner: frimpe examples to more complex ones.
A curriculum learning extension (Gulcehre & Bengio, 2018%also shown that by using guidance
hints on an intermediate layer during the training, one d@ansiderably ease training. However,
Bengio (2009) uses hand-defined heuristics to measureithplisity” of an example in a sequence
and Gulcehre & Bengia (2013)’s guidance hints require sorioe knowledge of the end-task. Both
of these curriculum learning strategies tend to be proldeetific.

Our approach alleviates this issue by using a teacher maunid¢ed, intermediate representations
learned by the teacher are used as hints to guide the FitNiatipgtion procedure. In addition, the
teacher confidence provides a measure of example “simglicyt means of teacher cross-entropy
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term in Eq. [2). This term ensures that examples with a highher confidence have a stronger
impact than examples with low teacher confidence: the latimespond to probabilities closer to
the uniform distribution, which exert less of a push on thaleht parameters. In other words, the
teacher penalizes the training examples according to fifidence. Note that parametgiin Eq.

(2) controls the weight given to the teacher cross-entrapg, thus, the importance given to each
example. In order to promote the learning of more complexgtas (examples with lower teacher
confidence), we gradually anneabduring the training with a linear decay. The curriculum can b
seen as composed of two stages: first learn intermediateptieia the hint/guided layer transfer,
then train the whole student network jointly, annealingvhich allows easier examples (on which
the teacher is very confident) to initially have a strongéeaf but progressively decreasing their
importance as\ decays. Therefore, the hint-based training introducedhénpaper is a generic
curriculum learning approach, where prior information atbtihne task-at-hand is deduced purely
from the teacher model.

[ Algorithm [ #params | Accuracy |
Compression
FitNet ~2.5M 91.61%
Teacher ~9M 90.18% i
Mimic singie ~54M 84.6% [ Algorithm [ # params [ Accuracy |
Mimic single ~70M 84.9% Compression
Mimic ensemble ~70M 85.8% FitNet ~2.5M 64.96%
Sate-of-the-art methods Teacher ~9M 63.54%
Maxout 90.65% State-of-the-art methods
Network in Network 91.2% Maxout 61.43%
Deeply-Supervised Networks 91.78% Network in Network 64.32%
Deeply-Supervised Networks (19) 88.2% Deeply-Supervised Networks 65.43%
Table 1: Accuracy on CIFAR-10 Table 2: Accuracy on CIFAR-100

3 RESULTS ONBENCHMARK DATASETS

In this section, we show the results on several benchmaasédt®& The architectures of all networks
as well as the training details are reported in the suppléangmaterial.

3.1 CIFAR-10AND CIFAR-100

The CIFAR-10 and CIFAR-100 datasets (Krizhevsky & Hinto®09) are composed of 32x32 pixel
RGB images belonging to 10 and 100 different classes, régpbc They both contain 50K training
images and 10K test images. CIFAR-10 has 1000 samples [z=; @laereas CIFAR-100 has 100
samples per class. Like Goodfellow et al. (2013b), we nomedlthe datasets for contrast normal-
ization and applied ZCA whitening.

CIFAR-10: To validate our approach, we trained a teacher network ofomiaconvolutional lay-
ers as reported in_Goodfellow et &l. (2013b) and designedNeFivith 17 maxout convolutional
layers, followed by a maxout fully-connected layer and agofimax layer, with roughlyt /3 of
the parameters. The 11th layer of the student network wasettao mimic the 2nd layer of the
teacher network. Like in Goodfellow et|al. (2013b); CheneYal. (2014), we augmented the data
with random flipping during training. Tablé 1 summarizes tf¢ained results. Our student model
outperforms the teacher model, while requiring notablydieparameters, suggesting that depth is
crucial to achieve better representations. When compareetivork compression methods, our
algorithm achieves outstanding result&, the student network achieves an accurac91061%,
which is significantly higher than the top-perforng8% of |Ba & Caruanal(2014), while requir-
ing roughly 28 times fewer parameters. When compared te-sfathe-art methods, our algorithm
matches the best performers.

One could argue the choice of hinting the inner layers withtitdden state of a wide teacher net-
work. A straightforward alternative would be to hint thenttlwihe desired output. This could be
addressed in a few different ways: (1) Stage-wise trainvftgre stage 1 optimizes the 1st half of
the network w.r.t. classification targets and stage 2 optisithe whole network w.r.t. classification

2Code to reproduce the experiments publicly available:shigithub.com/adri-romsor/FitNets
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targets. In this case, stage 1 set the network parametengandalocal minima but such initializa-
tion did not seem to help stage 2 sufficiently, which failede@arn. To further assist the training
of the thin and deep student network, we could add extra kiittsthe desired output at different
hidden layers. Nevertheless, as observed. in (Bengic €G07), with supervised pre-training the
guided layer may discard some factors from the input, whicjuire more layers and non-linearity
before they can be exploited to predict the classes. (2)eStage training with KD, where stage 1
optimizes the 1st half of the net w.r.t. classification tésgand stage 2 optimizes the whole network
w.rt. Eq. [2). As in the previous case, stage 1 set the n&tparameters in a good local minima
but such initialization did not seem to help stage 2 suffityermvhich failed to learn. (3) Jointly
optimizing both stages w.r.t. the sum of the supervisedfointhe guided layer and classification
target for the output layer. We performed this experimeigdtdifferent initializations and learning
rates with RMSprop (Tieleman & Hinton, 2012) but we could firedl any combination to make the
network learn. Note that we could ease the training by adHints to each layer and optimizing
jointly as in Deeply Supervised Networks (DSN). Therefave built the above-mentioned 19-layer
architecture and trained it by means of DSN, achieving agebrmance o88.2%, which is sig-
nificantly lower than the performance obtained by the FigNenht-based trainingd(.61%). Such
result suggests that using a very discriminative hint wetassification at intermediate layers might
be too aggressive; using a smoother hint (such as the guddeom a teacher network) offers better
generalization. (4) Jointly optimizing both stages w.ttte sum of supervised hint for the guided
layer and Eq.[{2) for the output layer. Adding supervisedshin the middle layer of the network
did not ease the training of such a thin and deep network,wfaited to learn.

CIFAR-100: To validate our approach, we trained a teacher network abnneconvolutional layers
as reported in_Goodfellow etlal. (2013b) and used the sanNef#rchitecture as in CIFAR-10.
As inlChen-Yu et al.| (2014), we augmented the data with ranflipping during training. Tablg]2
summarizes the obtained results. As in the previous cas&iitNet outperforms the teacher model,
reducing the number of parameters by a factor of 3 and, wheypaced to state-of-the-art methods,
the FitNet provides near state-of-the-art performance.

3.2 SVHN

The SVHN dataset (Netzer et al., 2011) is compose@dy 32 color images of house numbers
collected by GoogleStreet View. There are 73,257 imagelsdriraining set, 26,032 images in the
test set and 531,131 less difficult examples. We follow ttadumation procedure of Goodfellow et al.

(2013b) and use their maxout network as teacher. We trair®tlayer FitNet composed of 11

maxout convolutional layers, a fully-connected layer asdimax layer.

| Algorithm | # params | Misclass |
Compression

| Algorithm | # params | Misclass | Teacher ~361IK | 0.55%
Compression Standard backprop ~30K 1.9%
FitNet ~1.5M 2.42% KD ~30K 0.65%
Teacher ~4.9M 2.38% FitNet ~30K 0.51%

Sate-of-the-art methods State-of-the-art methods
Maxout 2.47% Maxout 0.45%
Network in Network 2.35% Network in Network 0.47%
Deeply-Supervised Networks 1.92% Deeply-Supervised Networks 0.39%

Table 3: SVHN error Table 4: MNIST error

Table[3 shows that our FitNet achieves comparable accunaaythe teacher despite using o8
of teacher capacity. Our FitNet is comparable in terms ofgperance to other state-of-art methods,
such as Maxout and Network in Network.

3.3 MNIST

As a sanity check for the training procedure, we evaluatedptioposed method on the MNIST
dataset/(LeCun et al., 1998). MNIST is a dataset of handwaritigits (from O to 9) composed of
28x28 pixel greyscale images, with 60K training images abid test images. We trained a teacher
network of maxout convolutional layers as reported in_Getidiv et al. (2013b) and designed a
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FitNet twice as deep as the teacher network and with rougffélpf the parameters. The 4th layer
of the student network was trained to mimic the 2nd layer eftdacher network.

Table[4 reports the obtained results. To verify the influenfcesing hints, we trained the FitNet
architecture using either (1) standard backprop (w.r.asgification labels), (2) KD or (3) Hint-
based Training (HT). When training the FitNet with standaadkprop from the softmax layer, the
deep and thin architecture achievue8% misclassification error. Using KD, the very same network
achieved.65%, which confirms the potential of the teacher network; andmaéeding hints, the
error still decreases @51%. Furthermore, the student network achieves slightly be¢isults than
the teacher network, while requiring 12 times less pararsete

3.4 AFLW

AFLW (Koestinger et all, 2011) is a real-world face databaseataining 25K annotated images. In

order to evaluate the proposed framework in a face recagrsgtting, we extracted positive samples
by re-sizing the annotated regions of the images to fit 16xi€ppatches. Similarly, we extracted

25K 16x16 pixels patches not containing faces from ImagéRassakovsky et al., 2014) dataset,
as negative samples. We ugis of the extracted patches to train the network.

In this experiment, we aimed to evaluate the method on ardiftekind of architecture. Therefore,
we trained a teacher network of 3 ReLU convolutional layers a sigmoid output layer. We de-
signed a first FitNet (FitNet 1) with 15 times fewer multi@t®ons than the teacher network, and a
second FitNet (FitNet 2) with 2.5 times fewer multiplicatgthan the teacher network. Both FitNets
have 7 ReLU convolutional layers and a sigmoid output layer.

The teacher network achievad1% misclassification error on the validation set. We trainethbo
FitNets by means of KD and HT. On the one hand, we report a asisiflcation error oft.58%
when training FitNet 1 with KD and a misclassification errbmden 2.55% when training it with
HT. On the other hand, we report a missclassifation errar@if% when training FitNet 2 with KD
and a misclassification error ®f85% when training it with HT. These results show how the method
is extensible to different kind of architectures and hightithe benefits of using hints, especially
when dealing with thinner architectures.

4 ANALYSIS OF EMPIRICAL RESULTS

We empirically investigate the benefits of our approach bygaring various networks trained us-
ing standard backpropagation (cross-entropy w.r.t. §bKD or Hint-based Training (HT). Exper-
iments are performed on CIFAR-10 dataset (Krizhevsky & blin2009).

We compare networks of increasing depth given a fixed contipnte budget. Each network is com-
posed of successive convolutional layers of kernel 8ize3, followed by a maxout non-linearity
and a non-overlapping x 2 max-pooling. The last max-pooling takes the maximum oviereal
maining spatial dimensions leading td & 1 vector representation. We only change the depth and
the number of channels per convolution between differetwaidks, i.e. the number of channels per
convolutional layer decreases as a network depth incréasespect a given computational budget.

4.1 ASSISTING THE TRAINING OF DEEP NETWORKS

In this section, we investigate the impact of HT. We consiser computational budgets of ap-

proximately 30M and 107M operations, corresponding to thetiplications needed in an image

forward propagation. For each computational budget, wia tratworks composed of 3, 5, 7 and
9 convolutional layers, followed by a fully-connected lagad a softmax layer. We compare their
performances when they are trained with standard backgetips, KD and HT. FigurE]2 reports

test on CIFAR-10 using early stopping on the validationisetwe do not retrain our models on the
training plus validation sets.

Due to their depth and small capacity, FitNets are hard to.tr&s shown in Figurgé 2(&), we could
not train 30M multiplications networks with more than 5 leyaevith standard backprop. When
using KD, we succesfully trained networks up to 7 layers. idAddKD'’s teacher cross-entropy to
the training objective (Eq.[12)) gives more importance tsieaexamplesi.e. samples for which
the teacher network is confident and, can lead to a smoothsioneof the training cost (Bengio,
2009). Despite some optimization benefits, it is worth notichat KD training still suffers from
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Figure 2: Comparison of Standard Back-Propagation, Kndgddistillation and Hint-based Train-
ing on CIFAR-10.

Network [ #layers | # params | #mult |  Acc [ Speed-up | Compression rate |

Teacher 5 ~9M ~725M | 90.18% 1 1
FitNet 1 11 ~250K ~30M 89.01% 13.36 36
FitNet 2 11 ~862K ~108M [ 91.06% 4.64 10.44
FitNet 3 13 ~1.6M ~392M | 91.10% 1.37 5.62
FitNet 4 19 ~2.5M ~382M | 91.61% 1.52 3.60

Table 5: Accuracy/Speed Trade-off on CIFAR-10.

the increasing depth and reaches its limits for 7-layer agts: HT tends to ease these optimization
issues and is able to train 13-layer networks of 30M muttgtions. The only difference between
HT and KD is the starting point in the parameter space: eitdwedom or obtained by means of the
teacher’s hint. On the one hand, the proliferation of localima and especially saddle points in
highly non-linear functions such as very deep networks Iigts the difficulty of finding a good
starting point in the parameter space at random_(Dauphil, 204 4). On the other hand, results in
Figure[2(d) indicate that HT can guide the student to a bigtitéal position in the parameter space,
from which we can minimize the cost through stochastic gmailescent. Therefore, HT provides
benefits from an optimization point of view. Networks traineith HT also tend to yieldetter
test performances than the other training methods when we fix the capacity amdbaun of layers.
For instance, in Figuile 2(b), the 7-layers network, traimét hints, obtains a+-0.7% performance
gain on the test set compared to the model that does not ud@rasythe accuracy increases from
89.45% 10 90.1%). As pointed by Erhan et al. (2009), pre-training strategi&n act as regularizers.
These results suggest that HT is a stronger regularizeidbasince it leads to better generalization
performance on the test set. Finally, Figlle 2 highlights teep models have better performances
than shallower ones given a fixed computational budget. dddeonsidering networks that are
trained with hints, an 11-layer network outperforms a Selayetwork by an absolute improvement
of 4.11% for 107M multiplications and 08.4% for 30M multiplications. Therefore, the experiments
validate our hypothesis that given a fixed number of commriaf we leverage depth in a model to
achieve faster computation and better generalization.

In summary, this experiment shows that (1) using HT, we ale @ktrain deeper models than with
standard back-propagation and KD; and (2) given a fixed dgpdeeper models performed better
than shallower ones.

4.2 TRADE-OFFBETWEENMODEL PERFORMANCE AND EFFICIENCY

To evaluate FitNets efficiency, we measure their total eriee times required for processing
CIFAR-10 test examples on a GPU as well as their parametepiassion. Tablgl5 reports both
the speed-up and compression rate obtained by varioustBitet. the teacher model along with
their number of layers, capacity and accuracies. In thigempent, we retrain our FitNets on train-
ing plus validation sets asin Goodfellow et al. (2013b),fér comparison with the teacher.
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FitNet 1, our smallest network, wits6 x less capacity than the teacher, is one order of magnitude
faster than the teacher and only witnesses a minor perfaredecrease af.3%. FitNet 2, slightly
increasing the capacity, outperforms the teached.b%, while still being faster by a strong 64
factor. By further increasing network capacity and depthithets 3 and 4, we improve the perfor-
mance gain, up td.6%, and still remain faster than the teacher. Although a trafflbetween speed
and accuracy is introduced by the compression rate, Fitidetsto be significantly faster, matching
or outperforming their teacher, even when having low capaci

A few works such as matrix factorization (Jaderberg et d@142| Denton et all, 2014) focus on
speeding-up deep networks’ convolutional layers at theeegp of slightly deteriorating their per-
formance. Such approaches are complementary to FitNetsoand be used to further speed-up the
FitNet’s convolutional layers.

Other works related to quantization schemes (Chen et al(;20egou et al., 2011; Gong et al.,
2014) aim at reducing storage requirements. Unlike FitNa&ish approaches witness a little de-
crease in performance when compressing the network pagesn&xploiting depth allows FitNets
to obtain performance improvements w.r.t. their teachessn when reducing the number of param-
etersl0x. However, we believe that quantization approaches arecalsplementary to FitNets and
could be used to further reduce the storage requirementgould be interesting to compare how
much redundancy is present in the filters of the teacher mksna.r.t. the filters of the FitNet and,
therefore, how much FitNets filters could be compressedowittvitnessing significant performance
drop. This analysis is out of the scope of the paper and isieftiture work.

5 CONCLUSION

We proposed a novel framework to compresgde anddeep networks intathin anddeeper ones, by
introducingintermediate-level hints from the teacher hidden layers to guide the training prooéss
the student. We are able to use these hints to train very dedprd models with less parameters,
which can generalize better and/or run faster than theahiers. We provided empirical evidence
that hinting the inner layers of a thin and deep network whi hidden state of a teacher network
generalizes better than hinting them with the classificatémgets. Our experiments on benchmark
datasets emphasize that deep networks with low capaciytdeeo extract feature representations
that are comparable or even better than networks with as msidi times more parameters. The
hint-based training suggests that more efforts should betdd to explore new training strategies
to leverage the power of deep networks.
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A  SUPPLEMENTARY MATERIAL: NETWORK ARCHITECTURES AND
TRAINING PROCEDURES

In the supplementary material, we describe all network itactures and hyper-parameters used
throughout the paper.

A.1 CIFAR-10/CIFAR-100

In this section, we describe the teacher and FitNet ardhites as well as hyper-parameters used in
both CIFAR-10/CIFAR-100 experiments.

A.1.1 TEACHERS

We used the CIFAR-10/CIFAR-100 maxout convolutional nekgaeported in_Goodfellow et al.
(2013b) as teachers. Both teachers have the same archétestimposed of 3 convolutional hidden
layers of 96-192-192 units, respectively. Each convohaldayer is followed by a maxout non-
linearity (with 2 linear pieces) and a max-pooling operatith respective windows sizes of 4x4,
4x4 and 2x2 pixels. All max-pooling units have an overlap x2 Dixels. The third convolutional
layer is followed by a fully-connected maxout layer of 500tsirfwith 5 linear pieces) and a top
softmax layer. The CIFAR-10/CIFAR-100 teachers are trdinsing stochastic gradient descent
and momentum. Please refer to Goodfellow et al. (2013b) fmerdetails.

A.1.2 HTNETS

Here, we describe the FitNet architectures used in the @d8tiand Sectiofl4. Each FitNet is
composed of successive zero-padded convolutional lay&esiel size3 x 3, followed by a maxout
non-linearity with two linear pieces. A non-overlappiag< 2 max-pooling follows some of the
convolutional layers; each network has a total of 3 max-pgalnits. The last max-pooling takes
the maximum over all remaining spatial dimensions, leatiing1 x 1 vector representation. The
last convolutional layer is followed by a fully-connectetlea softmax layer, as the ones on CIFAR-
10/100 teachers.

Table[® describes the architectures used for the depthiexgarin Figurd 2. Tablgl7 describes the
architectures for the efficiency-performance trade-offeziment in Tabl€l5. The results reported in
Table[1, Tablgl? and Taklé 3 correspond to the FitNet 4 acthite.

All FitNet parameters were initialized randomly in U(-08)0.005). We used stochastic gradient
descent with RMSProp (Tieleman & Hinton, 2012) to train th&lEts, with an initial learning rate
0.005 and a mini-batch size of 128. Parametdn Eq. (2) was initialized td and decayed linearly
during500 epochs reaching = 1. The relaxation termr was set to 3.

On CIFAR-10, we divided the training set into 40K trainingaexples and 10K validation examples.
We trained stage 1 by minimizing EfJ (3) and stopped theitrgiafter 100 epochs of no validation
error improvement, performing a maximum of 500 epochs. rAfiat, we trained stage 2 by mini-
mizing Eq. [2) using RMSprop, the same stopping criteriaththie same hyper-parameters as stage
1. We picked the optimal number of epochs according to theednwentioned stopping criterion
and retrained the FitNet on the whole 50K training examplesr(ing + validation sets).

On CIFAR-100, we trained directly on the whole training s&ihg stochastic gradient descent with
RMSprop, the same hyper-parameters as CIFAR-10 FitNetshendumber of epochs determined
by CIFAR-10 stopping criterion.

A.2 MNIST

In this section, we describe the teacher and FitNet ardhites as well as the hyper-parameters used
in the MNIST experiments.

We trained a teacher network of maxout convolutional layessreported in_Goodfellow etlal.
(2013b). The teacher architecture has three convolutmnaabut hidden layers (with 2 linear pieces
each) of 48-48-24 units, respectively, followed by a spati@x-pooling of 4x4-4x4-2x2 pixels, with

11
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| 5 Layer 7 Layer 9 Layer | 11 Layer |
conv 3x3x64 (3x3x128] conv 3x3x16 (3x3x32)| conv 3x3x16 (3x3x32)| conv 3x3x16 (3x3x16)
pool 2x2 conv 3x3x32 (3x3x64)| conv 3x3x32 (3x3x32)| conv 3x3x16 (3x3x32)
pool 2x2 pool 2x2 conv 3x3x16 (3x3x32)

pool 2x2
conv 3x3x64 (3x3x128] conv 3x3x32 (3x3x80)| conv 3x3x32 (3x3x64)| conv 3x3x32 (3x3x48)
pool 2x2 conv 3x3x64 (3x3x80)| conv 3x3x32 (3x3x80)| conv 3x3x32 (3x3x64)
pool 2x2 conv 3x3x32 (3x3x80)| conv 3x3x32 (3x3x80)

pool 2x2 pool 2x2
conv 3x3x64 (3x3x128) conv 3x3x64 (3x3x128)] conv 3x3x48 (3x3x96)| conv 3x3x48 (3x3x96)
pool 8x8 pool 8x8 conv 3x3x64 (3x3x128) conv 3x3x48 (3x3x96)
pool 8x8 conv 3x3x64 (3x3x128

pool 8x8

fc fc fc fc
softmax softmax softmax softmax
hint: 22 hint: 42 hint: 52 hint: 72

Table 6: Fitnet architectures with a computational budde2aM (or 107M) of multiplications:
convs,; x s, x cis a convolution of kernel size, x s, with ¢ outputs channels; poel, x s, is
a non-overlapping pooling of size, x s,; fc stands for fully connected. hint: FitNet teacher
specifies the hint and guided layers used for hint-baseditiggirespectively.

| FitNet1 FitNet 2 FitNet 3 FitNet4 |
conv 3x3x16| conv 3x3x16 | conv 3x3x32 | conv 3x3x32
conv 3x3x16| conv 3x3x32 | conv 3x3x48 | conv 3x3x32
conv 3x3x16| conv 3x3x32 | conv 3x3x64 | conv 3x3x32
pool 2x2 pool 2x2 conv 3x3x64 | conv 3x3x48
pool 2x2 conv 3x3x48
pool 2x2
conv 3x3x32| conv 3x3x48 | conv 3x3x80 | conv 3x3x80
conv 3x3x32| conv 3x3x64 | conv 3x3x80 | conv 3x3x80
conv 3x3x32| conv 3x3x80 | conv 3x3x80 | conv 3x3x80
pool 2x2 pool 2x2 conv 3x3x80 | conv 3x3x80
pool 2x2 conv 3x3x80
conv 3x3x80
pool 2x2
conv 3x3x48| conv 3x3x96 | conv 3x3x128| conv 3x3x128
conv 3x3x48| conv 3x3x96 | conv 3x3x128| conv 3x3x128
conv 3x3x64| conv 3x3x128| conv 3x3x128| conv 3x3x128
pool 8x8 pool 8x8 pool 8x8 conv 3x3x128
conv 3x3x128
conv 3x3x128
pool 8x8
fc fc fc fc
softmax softmax softmax softmax
hint: 62 hint; 62 hint; 82 hint: 11«2

Table 7: Performance-Efficiency FitNet architectures.
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an overlap of 2x2 pixels. The 3rd hidden layer is followed bylby-connected softmax layer. As is
Goodfellow et al.|[(2013b), we added zero padding to the skconvolutional layer.

We designed a FitNet twice as deep as the teacher networkigmdowghly 8% of the parameters.
The student architecture has 6 maxout convolutional hiddgers (with 2 linear pieces each) of
16-16-16-16-12-12 units, respectively. Max-pooling i¢yapplied every second layer in regions of
4x4-4x4-2x2 pixels, with an overlap of 2x2 pixels. The 6tmeolutional hidden layer is followed
by a fully-connected softmax layer.

The teacher network was trained as described in Goodfeli@ly 2013b). The FitNet was trained
in a stage-wise fashion as described in Sedfion 2. We dividedraining set into a training set of
50K samples and a validation set of 10K samples.

All network parameters where initialized randomly in UQ05,0.005). In the first stage, the 4th
layer of the FitNet was trained to mimic the 2nd layer of thacteer network, by minimizing Eq.
(3) through stochastic gradient descent. We used a michlsitze of 128 samples and fixed the
learning rate to 0.0005. We initializedto 4 and decayed it for the first 150 epochs until it reached
1. The training was stopped according to the following cigte: after 100 epochs of no validation
error improvement and performning a maximum of 500 epochsu¥éd the same mini-batch size,
learning rate and stopping criterion to train the secongestahe relaxation term was set to 3.

A.3 SVHN

In this section, we describe the teacher and FitNet ardhites as well as the hyper-parameters used
in the SVHN experiments.

We used SVHN maxout convolutional network described in_aediallow et al. [(2013b) teacher.
The network is composed of 3 convolutional hidden layers4f88-128 units, respectively, fol-
lowed by a fully-connected maxout layer of 400 units and astfpmax layer. The teacher training
was carried out as in Goodfellow et al. (2013b).

We used the FitNet 4 architecture outlined in TaBle 7, ililiag the network parameters randomly
in U(-0.005,0.005) and training with the same hyper-patanseas in CIFAR-10. In this case, we
used the same early stopping as in CIFAR-10, but we did natirethe FitNet on the whole training

set (training + validation). The same hyper-parametergsevhsed for both stages.

A.4  AFLW

In this section, we describe the teacher and FitNet ardiites as well as the hyper-parameters used
in the AFLW experiments.

We trained a teacher network of 3 ReLU convolutional laydr$28-512-512 units, respectively,
followed by a sigmoid layer. Non-overlapping max-poolirfgsize 2 x 2 was performed after the
first convolutional layer. We used receptive fields of 3-bdach layer, respectively.

We designed two FitNets of 7 ReLU convolutional layers. &ith's layers have 16-32-32-32-32-
32-32-32 units, respectively, followed by a sigmoid layEitnet 2's layers have 32-64-64-64-64-
64-64-64 units, respectively, followed by a sigmoid layarboth cases, we used receptive fields of
3 x 3 and, due to the really small image resolution, we did notgrerfany max-pooling.

All network parameters of both FitNets where initializeddamly in U(-0.05,0.05). Both FitNets
were trained in the stage-wise fashion described in SeRtidte used0% of the data for training.
In the first stage, the 5th layer of the FitNets were trainethtmic the 3rd layer of the teacher
network, by minimizing Eq.[{3) through stochastic gradigéescent. We used a mini-batch size of
128 samples and initialized the learning rate to 0.001 arcdyd it for the first 100 epochs until
reaching 0.01. We also used momentum. We initialized moomentd 0.1 and saturated it to 0.9 at
epoch 100. We picked the best validation value after a 50@hkepd/Ne used the same mini-batch
size, learning rate and stopping criterion to train the sdaiage. The relaxation termwas set to

3.
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