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Abstract – This paper presents a hippocampal inspired 
robot localization model that provides a means for a 
simple robotic platform with ultrasonic sensors to 
localize itself. There have been published 
neurobiological experiments where rats were found to 
have hippocampal cell activations that positively 
correlate with the location of the animal [2, 3, 5]. Such 
activations found in the hippocamal region are usually 
called Place fields (PF) or Place cells (PC). The Place 
Field model presented in this paper was designed using 
a unique K-Means Fast Learning Artificial Neural 
Network (KFLANN) [13, 14, 15] and establishes a series 
of localization minima points that act as references for 
navigation. While such evidence of place cells are seen 
in hippocampal (CA1) and deep layers of the entorhinal 
cortex (EC) [4], from a literature search, it is uncertain 
if any applications were ever designed using this 
biological evidence. The intent of this paper is to focus 
on experimental results relevant for a proof-of-concept 
of robot localization, rather than illustrating a robustly 
tested navigation system. As such, basic ultrasonic 
based experiments will suffice. With some experimental 
results, we show that the KFLANN is suitable for 
implementing atomic place field vectors (APFV), a data 
structure to encapsulate localization information.  
 
Keywords - Place Field/ Cell Navigation, K-Means fast 
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I  INTRODUCTION 
 
Autonomous unmanned navigational systems have been 
dependent on localization sensors as a primary means for 
navigation. In outdoor autonomous systems such as those 
seen in the DARPA Grand Challenge, most vehicles would 
make use of combinations of GPS, RADAR, LIDAR and 
INS [6]. There has also been an increasing amount of 
research in using only vision to navigate autonomous 
platforms through spaces such as laboratories and corridors 
[5]. While these have provided a level of success, the 
extent of cognitive robotic navigation is far from being 
solved as a single failure in localization sensors usually 
leads to a catastrophic system failure. In the midst of man’s 
quest to create robust autonomous robotic systems that can 
navigate effortlessly through clutter and uncertain 
environments, laboratory mice used in experiments are 
revealing secrets of their navigational capabilities. Perhaps 

one of the differences in mammalian navigation as 
compared with robotic navigation is the dependence in 
cognitive capabilities as opposed to the heavy reliance on 
sensor technology.  
 
Technological advances need to be complemented with 
advances in aspects of cognitive processings. We present a 
method where localization of a robot within a structured 
space is done using ultrasound information and a compass 
direction. The discussion omits the navigational aspects of 
the system as that would require lengthier explanations. A 
discussion on the KFLANN in Section II is necessary 
before embarking onto Section III where details of how the 
Atomic Place Field Vector (APFV) is used for localization. 
 
II K-MEANS FAST LEARNING ARTIFICIAL NEURAL 

NETWORK (KFLANN) 
 
A..  KFLANN Network Architecture 
 
The KFLANN architecture resembles that of the ART 
neural network developed by Carpenter et al [9] and it 
utilizes the winner-take-all selection often associated with 
the Kohonen networks [10]. The architecture is depicted in 
Fig. 1 and comprises of two layers, namely the Input Layer 
(F1) and Output Layer (F2). Layer F1 is the direct map of 
the input patterns. The weighted connections between the 
input layer and output node are represented by the input 
vectors entering the network through the F1 layer. The 
Output layer is dynamically created to accommodate new 
exemplars from F1 that do not have representative patterns 
already existent in the F2 layer. The KFLANN algorithm 
requires an initialization of two parameters, namely 
Vigilance ρ and Tolerance δ. 
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Fig. 1 KFLANN architecture. 



The two KFLANN network parameters are key to obtain a 
suitable clustering outcome. This paper will utilize the 
Euclidean distance metric as it is more suitable for 
odometric references.  
 
B. KFLANN Network Parameters 
 
The KFLANN consists of 2 main network parameters. 
These are the Vigilance (ρ) and Tolerance settings (δ). 
Like the ART networks, the Vigilance factor (ρ) 
parameterizes the attention aspect of the network. The 
Tolerance setting (δ) provides a means to perform 
neighborhood competitions within the ART type model 
possessing a similar behavior to the type of nearest 
neighborhood competition found in the Kohonen 
networks. The KFLANN differs from the ART in this 
manner. Another property that differentiates the 
KFLANN from other networks is the possibility of 
heuristically deriving suitable values of the network 
parameters from the characteristic of the dataset 
presented. It is therefore necessary to possess the store of 
data exemplars before processing. It again differs from the 
ART in this aspect as the ART does not require an 
existing dataset, but executes on-line. 
 
C. Vigilance (ρ)  
 
The Vigilance (ρ) is a parameter that originated from 
Carpenter et al [9]. It was designed as a means to 
influence the matching degree between the prevailing 
exemplar and the of a long term memory trace. In the 
KFLANN, it functions similarly where higher values of ρ 
will enforce a stricter matching criteria and for smaller ρ 
results in a relaxed matching criteria. The ρ in the 
KFLANN is similar and is used to determine the number 
of the attributes in the presiding exemplar that are similar 
to the selected long term memory trace. The Vigilance 
formulation is given by equation (1). 
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Where fmatch is the number of the features needed in 
order to be classified as a same cluster and ftotal is the 
total number of features.  

This ρ is analogous to the human attentive behavior where 
a detailed scrutiny of information will generate finer 
resolutions in discriminative capabilities.  
 
D. Tolerance δ  
 
While ρ governs the global variation in the input features, 
the Tolerance, δ, is a localized control, affecting only 
individual features (elements of the exemplar vector). The 
Tolerance setting, δ, is the maximum allowable range that 

the specified feature is allowed to fluctuate. The standard 
deviation of the specific feature turns out to be a suitable 
data-driven heuristic that provides an autonomous means 
to setting the δ values. By definition, the standard 
deviation is the measurement of dispersion of sampled 
variables from the mean. The tolerance computation using 
the typical standard deviation (σ) is given in equation (1). 
At times, when clusters are not well defined, a σ/2 may be 
more suitable 
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Where iX  is the ith feature spans over n number of 

data patterns and µ is the respective mean value. 

 
E. The Algorithm 
 
The algorithm of the KFLANN is presented in this 
section. Its execution is similar to typical Leader-Type 
algorithms mentioned by Hartigan [12]. The distance 
metric used is the Euclidean distance. 
 

 Notation 
ρ: vigilance value 
δi: tolerance value of the ith attribute 
n: number of input attributes 

iI : the ith input node 
jiW : weight connecting the ith input node and the 

jth output neuron 
D[a] = 1 if a > 0.  

Otherwise  D[a] = 0. 
 

1 Initialize network with ρ between 0 and 1. Determine 
and set δi for i = 1, 2, 3, …, n. The values of ρ and δ 
affect the behaviors of the classification and learning 
process. 
 

2 Present the next pattern to the input nodes. If there 
are no output clusters present, GOTO 6. 
 

3 Determine the set of clusters that are possible 
matches using equation (2). If there are no output 
clusters GOTO 6. 
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4 Using criteria in equation (3) determine the winning 
cluster from the match set from Step 3. Normalize 

jiW  and iI . The following distance is calculated 

between the normalized versions. 
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5 Winner is found.  Add vector to the winning cluster. If 
there are no more patterns, GOTO 7. Else GOTO 2. 
 

6 No match found. Create a new output cluster and 
perform direct mapping from input vector into weight 
vector of new output cluster. If there are no more 
patterns, GOTO 7. Else GOTO 2. 
 

7 Re-compute cluster center using K-means algorithm. 
Find the nearest vector to the cluster center in each 
cluster using equation (3). Place the nearest vector in 
each cluster to the top of the training data and GOTO 
2. 

 
F  Topological Clustering Behavior of KFLANN 
 
An evident property of the KFLANN network is in the 
clustering consistency of the algorithm. While many 
clustering algorithms exist in literature today, few are able 
to provide consistent cluster centroids independent of the 
data presentation sequence (DPS) [13, 14, 15].  
 
KFLANN achieves its consistent clustering behavior by 
performing a reshuffling of the original data in Step 7 of 
the algorithm described in Section IIE. The reshuffling 
process involves the movement of data point closest to the 
individual cluster mean to top positions of the data list. 
This process essentially changes the seeding sequence on 
the data presentation sequence (DPS), but maintains the 
rest of the data in the original list position. The entire 
clustering process is then repeated on the new reshuffled 
data list, replacing the old dataset with the new reshuffled 
set. The results of the first iteration clustering is thus 
discarded and a completely new clustering is repeated 
using the new reshuffled data list. Termination of the 
clustering cycles can be invoked after all significant 
changes to the cluster centroids cease. In experiments 
conducted, it was empirically found that a maximum of 5 
iterations was needed for the centroid stabilization process.  
 
Geometrically, this reshuffling process changes the 
centroid seed positions in each subsequent epoch, 
spreading the centroids across the problem space before 
individual exemplar cases are presented. The two class 
Euclidean R2 example in Fig. 2 is used to illustrate how 
the KFLANN reshuffles data patterns and how centroid 
stability is achieved. Both classes are represented by 
different point markers. Assume that the initial data points 
presented start with P1, P2, P3 and P4. By virtue of the 
presentation sequence, the algorithm begins by adopting 
the 4 data points as centroids. 
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Fig.2  A 2D distribution of data points 

 
The first iteration of the KFLANN clustering produces 4 
clusters as shown in Fig 3. Centroids in each cluster are 
subsequently identified and the arrows in Fig. 4 indicate 
the direction which the new centroids would tend 
towards. This movement can be equated with a hill 
climbing process, where the point of central tendency is 
the optimal point in the space. 
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Fig 3 Initial formation of centroids in first interation 
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Fig. 4.  Arrows showing the movement tendency of 

the reshuffled centroids 

The re-computation of means after the first epoch shown 
in Fig. 4 leads to the shuffling of the cluster means to the 
top of the next data list. In the next iteration shown in Fig. 
5, the points at the top become the new points that seed 
the problem space with clustering centers. The arrows 
again indicate the migration path of the centroids. An 



apparent movement towards the central tendency of the 
data is achieved.  
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Fig. 5.  Centroids continue to shift to the region of 

central tendency in each subsequent 
reshuffle. 

As the iterations continue, the means begin to converge to 
specific central tendencies in the data space, forming 
consistent clusters. The movements of centroids can 
sometimes lead to merging of clusters as seen in centroids 
A and B of Fig. 6. Cluster B is subsumed by cluster A. 
Note that centroids C and D reach a limit for movement 
because the outer points in their clusters forbid the two 
clusters from merging. At the last iteration, three clusters 
were created with stabilized centroids and the clusters 
coverage is shown in Fig. 7. 
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Fig. 6.  Arrows showing the movement tendency of 

the reshuffled centroids 

The illustration in Fig. 7 indicates the cluster 
representation using circles, instead of the likelihood of 
irregular representations of the cluster. The data sequence 
reshuffling introduced to form the KFLANN algorithm 
allows the data pattern sequences to be in any initial 
order. As compared to clustering without reshuffling, the 
resulting clusters using KFLANN tend to be a consistent 
and stable, deviating minimally between independent 
runs. Results of the consistency tests can be obtained from 
Wong et al [14, 15], where the authors showed a tighter 

standard deviation in KFLANN reshuffled clusters, 
compared to those without reshuffling. 
 

Y axis

X axis  
Fig.7. Final Iteration Of The KFLANN Clustering On The 2D 

Exemplar Dataset 

G. Implications of KFLANN Clustering Consistency 
 
It is now important to understand the relevance of the 
need for consistent clustering. We would like to loosely 
analogize the simplistic concept from the 2D Euclidean 
problem discussed with an image recognition problem, 
where the objective is identifying apples and pears. If 
indeed the human recognition capability is built upon 
order dependent learning, then there should exist, a 
diverse opinion to classification of apples and pears. We 
argue that a fundamental necessity in the KFLANN 
algorithm is its ability to maintain a relatively consistent 
set of centroids regardless the DPS and it is only with 
such consistency that Hippocampal Place Fields (PF) or 
Place Cells (PC) can be effectively derived. 
 
III  KFLANN PLACE CELL COMPUTING 
 
Unlike the typical autonomous vehicle path planning 
methods, mammals have a very different concept to 
navigation. While the common method for AUGV path 
planning is based on grid maps and traversal weights, 
mammals are known to use place cells (PC) or place 
fields (PF) [7]. Place cells which are occasionally used 
interchangeably with place fields were first discovered by 
O’Keefe et al [16]. Through the years of continuous 
research, it is now known that there is a systematic way 
by which the mammalian hippocampus (CA1) is encoding 
spatial information which provides the means to 
recognize places. Some of the clinical experiments 
indicate a distinct firing rate of CA1 cells as the animal 
wonders across familiar paths [2, 4]. Other prominent 
experiments include the Morris Water Maze and the 
rotating platform [3, 17]. 
 
A  Place Field Construction using the KFLANN 
 
This section discusses how PFs for robotic localization 
applications can be designed with the help of KFLANN. A 



reason for this success is the inherently lean algorithmic 
structure that provides for high speed processing [13].  
 
An illustration of the some sensor locations on a simple 
robot model is shown in Fig. 8. This basic robotic model 
operates on 8 directional ultrasonic sensors and a digital 
compass. Through a simple manipulation of the sensor 
inputs, a 12 input Atomic Place Field Vector (APFV) is 
synthesized. While this is a basic example with 8 ultrasonic 
sensor inputs, these can be combined with other more 
precise sensors.  
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Fig. 8  Plan view of the robot using 8 directional ultrasonic 

sensors to determine the dimension and localization 
information within a confined space.  

 
The initial 8 inputs to the APFV consists of the following 
ultrasonic readings from the positions on the robot frame 
N, S, E, W, NE, SE, NW, NE. A subsequent 4 readings are 
derived from summing readings taken from opposite 
sensors, ie. N+S, E+W, NE+SW, NW+SE. The compass 
directional information is used as a means to orientate the 
sensors to populate a common fixed direction APFV. Thus, 
regardless the robot’s direction, only a single consistent 
APFV is created for any given location. 
 
Three experiments were carried out with this configuration 
to test the effectiveness of the APFV. The goals of these 
experiments were 
 
(i)  Examine the localization efficacy of FLANN APFV. 
(ii)  Determine if confounding environments can occur in 

KFLANN APFV 
(iii) Examine how KFLANN APFV growing behavior is 

consistent with mammalian navigational concepts. 
 
B  Localization Efficacy of the KFLANN APFV 
 
The first objective was to determine the localization 
capability of the robot within a single large open space. 

The dimensions of the room need to be within the 
operating range of the sensors. Fig. 9 shows the results of 
the experiment when the robot was manually driven around 
the room 5m square room to collect sensor information. 
Note that the creation of new clusters was a sporadic 
process where new clusters were constantly created as it 
entered unfamiliar territories.  
 

 
Fig. 9  Initial clustering of visited points into regions of 

reference (Square Room) 
 

 
 

Fig 10.  Reduced Place cell representation after consolidation 
(Square Room) 

 
Fig. 10 shows the clusters after consolidation of 
information using the KFLANN reshuffling. Note that the 
number of clusters was reduced from 143 clusters in Fig. 9 
to 13 clusters in Fig. 10 after consolidation. 
 
The circles help highlight the centroid positions, but do not 
indicate the field of influence. This field of influence 
cannot be visualized here because each APFV is a 12 
dimensional vector. All that the circle can implicate is the 
estimated position of the centroid. In this APFV 
representation in autonomous navigation, it is thus possible 
to relate actual positions of the robot to approximate 
locations of the robot. This is consistent with the way 
mammals navigate, where localizations are referenced to 
surrounding information, rather than a global position such 



as GPS data. It is also consistent to state that the precise 
position of the mammal is of little importance, but 
estimated references were sufficient for successful 
navigation.  This provides a more robust means for 
performing navigation, as compared with grid based 
planning methods where precision grid positions are often 
used to autonomously navigate vehicles across the terrain. 
 
C  Confounding Atomic Place Field Vectors (APFV) 
 
One concern in PF computations is the possibility that two 
places possess the same APFV definition. This is caused 
by the possibility of having two locations with the exact 
sensor readings. The experiment that follows shows that 
this possibility indeed exists. A larger facility was used to 
test the effectiveness of APFVs and to illustrate the 
possibility of confounding spaces. Unlike the first 
experiment where the APFVs were used to localize a single 
room, larger facilities will tend to provide more 
opportunities for confounding the APFVs. Fig. 11 shows 
the experimental results of an initial run through a 20m 
long corridor. 
 

 
 
Fig. 11  A 20m long corridor with complex structures 
 
A total of 119 clusters were formed in this run. After the 
reshuffling process, the number reduced to a consolidated 
set of 24 clusters. This is illustrated in Figure 12. 

 
 
Fig. 12  Reduced clusters after KFLANN APFV reshuffling. 

As expected, several confounding APFVs were located and 
through an examination of the APFV configuration, we 
show that such possibilities exist. Fig. 13a and Fig 13b 
show set of confounded locations 

 
(a)                                            (b) 
 
Fig 13  Areas where the APFV had confounding locations. 
 
It is noted that APFV definitions can be confounded in 
several different locations. This is because the 12 
dimensional input vector received at the locations may bear 
similar magnitudes and general similarities. Thus, the 
ultrasonic information is insufficient to differentiate the 
two confounded places. In Fig 13a, several spots away 
from the original centroid are seen. This is because the  
spots share the same 12 dimensional APFV centroid, 
marked as a circle. This is also seen in Fig 13b where the 
two angled corners of the room bear similar ultrasonic 
characteristics. One possible solution to this is to increase 
the dimensional inputs of ultrasonic sensors. However, we 
have chosen not to pursue this avenue because we believe 
the hippocampal and enthorhinal cortex do resolve 
confounding issues at the level of the APFV, but address 
navigation at a higher hierarchical level. However, we 
know from neurological research that APFV equivalents 
do exist but are not by themselves complete. APFVs are a 
means by which a more complex set of parameters are used 
in order that navigation can be achieved without 
confounding. The solution to this confounding issue is not 
discussed in this paper. 
 
D  Stable Clustering and Generalization 
 
As discussed in the section on KFLANN, the algorithm is 
able to consistently derive similar centroids regardless the 
DPS. We mentioned that is not always true for other 
algorithms as many existing algorithms are sensitive to 
DPS. The experiment in III B highlighted how the 
centroids were first created as the vehicle moved through 
the single large room. We note that if the robot was 
allowed to reorganize using the reshuffling feature in 
KFLANN, the resultant clusters will begin to perform an 
optimization and the centroids will begin to shift, 
eventually providing a new representation of the place. 
This result is shown in the two cases of Fig. 10 and Fig. 12, 
where the reshuffling process performed a complete 
rearrangement of centroids. The clusters were reduced 



from the original 143 to 13 and 119 to 24 respectively. 
This observation is important because the centroids can 
also be deemed as a stereotype of the place or location. 
Having a consistent stereotype is therefore essential for 
common place recognition and ascertaining the consistency 
of information between multiple robots and multiple runs. 
It is thus important that across platforms, for means of 
communicating positions, localization can generally be 
repeated. 
 
Fig 14 shows the robot platform where experiments are 
being executed or simulated on. 
 

 
 

Fig. 14 The experimental platform 
 
IV DISCUSSION AND CONCLUSIONS 
 
A  APFV and the hippocampal equivalent 
 
Atomic Place Field Vector (APFV) was coined out of the 
construction that it is the basic unit by which actual 
cognitive navigation can be achieved. This is designed 
specifically for this simple robotic platform. Frank et al [4] 
provided significant evidence that hippocampal (CA1) 
interactions with the enthorhinal cortex (EC) exhibit 
different firing rates even when the rat was in the same 
location. This result is contrary to the theory that place 
cells were coding only place positions. See Marr 1971 [19]. 
In their experiments with rat hippocampal recordings, it 
was noted by Frank et al that while the rat location was 
important, equally important was the place of origin and 
the target destination of the rat. This was deduced when 
hippocampal cells did not always fire at the same rates 
even though the rat was at the exact position of the given 
cell recording. However they noted that firing was 
consistent based on the rat's previous location, current 
position and intended destination. It is therefore sufficient 
at this point, to present a means to code a specific location 

using the APFV with KFLANN without considering the 
before and after positions of the rat. We believe that our 
quest for a successful PF navigation can be achieved by 
manipulating the existing APFVs in a hierarchical manner 
(not discussed in this paper). 
 
B  Confounding results in the APFV 
 
The APFV confounding situation can only be partially 
appreciated from the Euclidean representation in the 
figures provided. Each APFV is a 12 dimensional vector 
consist of the directional sensor information obtained for 
the robot. The confounding regions shown in Fig. 13a and 
Fig. 13b provide insight into the reasons for the confusion. 
Note that because the conditions of the APFV at the points 
are very much similar, as a result, confounding 
circumstances arise. Confounding can sometimes be 
caused by the generalization of the KFLANN. While it is 
the characteristic of the KFLANN algorithm to generalize 
across 12 input vectors so that it is able to cater to noise in 
the ultrasonic readings, it happens to be an issue of 
overgeneralization. Here we see that due to a desire to 
increase the robustness, it has added in compensations that 
increase the possibility of confounding similar looking 
spaces. We believe that this issue will be addressed as a 
more elaborate hippocampal model is designed, where 
combinations of APFVs are knit together. 
 
C  Optimization of the centroids (Motivation in REM and 

NREM) 
 
An observation on the initial robotic discovery phase is the 
generation of a considerable number of clusters. After a 
time of consolidation through reshuffling in KFLANN, the 
number of clusters reduced significantly.  
 
We would like to compare this with the biological 
equivalent of results obtained from Louie et al and Wilson 
[11, 1].  While it is difficult to examine cluster stereotypes 
in neurobiological studies, the investigators did note that 
the experimental rats exhibited a form of temporal replay 
of the places visited. During the Rapid Eye Movement 
(REM) sleep in the rat, hippocampal (CA1) neurons were 
found to replay the sequence of activity that had been 
experienced on a timescale of tens of seconds to minutes. 
These patterns and extended patterns of ensemble response 
could be directly matched with corresponding patterns that 
had been recorded during training (discovery) on a simple 
behavioral task. 
 
We would liken the process of Hippocampal replay as a 
means for the robot to reorganize the locations to perform a 
stereotyping process. This stereotyping process eventually 
optimizes the feature space of the room so that there is a 
smaller set of features that represent the different locations. 
 



D  A new paradigm for navigation (PFV vs Grid) 
 
We have presented here a new paradigm by which robots 
may be localized by environmental features. A series of 
experimental results were presented to provide a proof-of-
concept. While the AFPVs show considerable confounding 
possibilities, we see this as the building block towards a 
comprehensive place cell navigation neural system. As 
compared with the grid based navigational algorithms such 
as those presented in Ibanez-Guzman et al [7], APFVs 
have a potential of providing a more robust platform for 
navigating in highly uncertain environments without 
complex localization sensors. While we have presented an 
approach indoors with very simplistic and course grained 
sensor array, the concept extends to the entire set of highly 
accurate sensors. 
 
E  Future work 
 
The present work is confined to algorithmic processing of 
a neural inspired architecture. The focus has been on 
algorithms with sensory responses which are physical. We 
intend to push this work towards navigation using APFVs 
and provide for a means where cognitive decisions can be 
made by the robot. It thus seems inevitable, and a natural 
process that future work advances into other aspects of 
human psychology, in particular, emotion.  
 
Despite controversy in the field about the dominance of 
the emotion as a motivating stimulus, most accept 
emotion as a trigger to action. Can the artificial device 
that is now capable of responding to a physical or 
cognitive stimulus, respond to an emotional trigger? What 
would be the role of emotions in their cognitive 
responses? What will trigger robots to make adjustments 
to their original intended goal? These are just some 
questions that the current research is probing into.  
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