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Abstract

In this thesis, a new type of hopping robot with a curved foot has been de-
veloped. The robot is self-stable and is operated using feedforward control.
By building a detailed physical model using the Newton-Euler equations and
implementing it numerically, the robot’s abilities and dynamics were investi-
gated. The ground contact model was realized by using a Newtonian kinematic
impact- and a Coulomb frictional law. Subsequently, a prototype of the robot
was planned and built. Experimental verification showed matching results with
the simulation. Parameter analyses based on a series of simulations were per-
formed, and revealed the intrinsic dynamical nature of the non-linear system.
The jumping angle of the robot’s center of mass at take-off was found to be a
highly useful parameter in terms of efficiency- and stability analysis. Further-
more, stable hopping patterns with a small standard deviation of the take-off
angle showed the highest locomotion efficiency. Finally, a geometrical parameter
for feedforward speed control was discovered and is presented in this thesis.
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Chapter 1

Introduction

In recent years, legged locomotion has been given more and more attention in
the robotics community. Scientists have started to analyze animals such as kan-
garoos or cheetahs in order to rebuild a robot model, developed robots that can
walk without a motor, or built legged robots which can maintain their balance
even if they are pushed severely. The question arises why many institutions
are interested in building legged robots. Consdiering that wheeled robots or
vehicles, such as cars or trains, are almost unexcelled in terms of locomotion
efficiency, this is certainly an important question to discuss. As a matter of
fact, human walking is about a factor of 10 times less efficient than wheeled
vehicles (Tucker 1970). To make things worse, nowadays most advanced and
versatile robots are in the range of 10 times less efficient than human walking
(Iida 2012). The reason for the increasing interest in legged locomotion doesn’t
lie within its efficiency, but within its high flexibility and agility. This can be
easily comprehended if one considers the drawbacks of wheeled locomotion in
rough terrain, such as forests or mountains. A legged robot on the other hand,
has the ability to adapt its mechanical structure to the given environmental
conditions, and is hence the preferred choice for explorational ventures.

In the remaining parts of this chapter, an overview of legged animal- and robot
locomotion research will be given.

1.1 Human and Legged Animal Locomotion

In terrestrial locomotion, the cost of transport is a crucial factor for the compar-
ison of animals’ efficiency. It was used in (Tucker 1970) and relates the energy
an animal has to expend to move a certain distance, to the body weight and the
travelled distance. The cost of transport was found to vary with different body
weight and type of locomotion, e.g. flying, running or swimming. Humans for
example show two characteristic gaits which have to be considered separately,
namely running and walking. A highly interesting fact with human walking, is
its self-stability property. It can be shown with simple models (Garcia 1998),
that it is possible to walk down a shallow slope without the use of any kind of
control or actuation. This indicates, that humans’ walking movement is defined
by its intrinsic mechanical properties rather than by controlled signals of the
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Figure 1.1: Illustration of different animal gaits. From left to right: Kangaroo
hopping1, ostrich running2, cheetah with rotary gallop3.

brain. When walking at increased speed, a transition from the walking gait to
the running gait occurs. The speed at which the change happens is at about√
gl (Ruina 2005). The reason why changes are occurring are not yet well un-

derstood (Raynor 2002). (Diedrich 1995) suggests, that the transition occurs
mainly when stability of the gait is lost due to velocity change and therefore,
energy expenditure rises.
There are various properties of the leg which influence the energetic cost of
locomotion. In (Adamczyk 2006), the influence of the foot radius for human
walking was tested with adult subjects. It was found that the radius of the foot
significantly influenced the net metabolic rate of walking, where the optimal
radius turned out to be 0.3 times the leg length. The reason why there are bet-
ter and worse ways to walk, can be explained by energy losses due to impacts
at touchdown. These are depending on foot and leg orientation, velocity and
the material properties (Gerritsen 1995). The impact is followed by the ground
contact phase, where the muscles are able to produce an accelerating force on
the body. It can be shown, that the ground contact time is another dominant
factor for the overall metabolic energy use of humans, as well as quadrupeds
(Roberts 1998).

Other than the gaits of bipedal walkers such as humans’ running or kanga-
roos’ hopping, quadrupeds show some advanced ways of locomotion. One of the
fastest gaits is the gallop, which is used by the horse, as well as the cheetah, the
fastest terrestrial animal (Bertram 2009). Similar analysis as for human walk-
ing has been done for the quadrupedal gaits in recent years. A simple model
(Berkemeier 1998) suggests that the body inertia is pivotal for stability and
transition of quadrupedal gaits, such as bounding or pronking. As this type of
locomotion is not further investigaitd in this thesis, the reader is referred to the
literature, e.g. in (Kar 2003).

A crucial factor of any legged locomotion is the leg’s compliant property. If
one had rigid legs, all of the kinetic energy at impact in normal direction to the
ground would be absorbed, which would decrease the efficiency of locomotion
severely. In order to avoid unnecessary energy losses at impact, muscles and
tendons are made to act as springs, which can recover energy from the sprung
mass at impact. (Alexander 1990) found three different usages of springs in

1Picture Source: www.empowernetwork.com, 9.28.2013.
2Picture Source: www.featheremporium.com , 9.28.2013.
3Picture Source: www.nationalgeographic.com, 9.28.2013.

4



legged biological systems. First, the named energy retrenchment is realized by
harnessing the ”pogo stick principle”. Second, the swing motion of the leg can
be redirected when reaching either end of the rotational movement of the hip.
Finally, direct impact losses of the unsprung mass can be prevented by com-
pliant foot pads, which also prevent the foot from chattering. In (Alexander
1995), different jumping techniques, which have the advantage of exploiting the
compliant behavior of the leg, are compared. Locusts and fleas are able to pre-
load their tendons and muscles, such that they can apply an explosive force in
a short period of time, which results in a high jump. Vertebrates on the other
hand, can not make use of a pre-loading system. They use countermovement
jumps in order to exploit the benefits of their springy legs. Squat jumps were
shown to produce the smallest jumping height, as no elastic energy is stored
with this jumping technique.

1.2 Legged Robots

During the last couple of years, two distinct categories have been emerging from
the field of legged robots. On the one hand, we have the feedback controlled
legged robots, which use sensors to identify the system’s state and correct devi-
ations from the desired trajectories by an implemented controller. On the other
hand, feedforward controlled legged robots have been given more and more at-
tention. These robots are using no sensory feedback at all, and are thus simpler
in terms of control. Passive dynamic walkers even manage to walk down a slope
without any kind of actuation. The reason why those robots manage to move
stably without feedback lies within their intrinsic mechanical nature. Hence,
a careful design of the mechanical structure of the system can greatly simplify
the control effort. The two types of robots are presented in more detail in the
following sections. Good summaries of the existing robots and their efficiency
can be found in (Kuo 2007) and (Sayyad 2007).

1.2.1 Feedback Controlled Robots

One of the most influencing robots, which triggered a rising interest in legged
locomotion was presented in (Raibert 1984). The 3D hopping machine first
demonstrated the enormous potential of feedback controlled legged robots. With-
out using any support and hopping on one leg only, the robot was able to jump
stably in all spacial direction without falling down. After Raibert, (Gregorio
1997) and (Ahmadi 2006) showed with their ARL-Monopods I and II, that
energy efficient and fast one-legged and planar locomotion can be realized by
applying Raibert’s control strategy. A simpler method to hop was presented in
(Zeglin 1999), where a hopper with a bowed leg, that can be pre-loaded by a
string, showed high energy efficiency. On the other hand, very complex one-
legged robots are investigaitd, such as a robot leg of the cheetah’s hind limb
(Lewis 2011).

Not only one-legged robots have been constructed in the past. Bipedal robots
are often investigaitd, as they can imitate humans’ gaits, such as walking or
running. One of the most famous humanoid robots is ASIMO (Sakagami 2002),
which is capable of moving like a human and interact with subjects around him.
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Figure 1.2: Illustration of various feedback controlled robots. From left to right:
Raibert’s 3D hopper1 , ASIMO2, BigDog3.

The PETMAN robot (Nelson 2012) was constructed to test chemical protective
clothing, but has astonishing capabilities as for human like walking and gestur-
ing. Bipedal robots are even being constructed to learn by themselves how to
walk, such as the 3D biped in (Tedrake 2002) and (Tedrake 2004), where the
robot learns to to adapt to changing ground properties as it is walking.

There is a broad interest in simulating quadrupeds and implementing control
strategies for animation ((Coros 2011), (Kokkevis(1995)), but also real world ap-
plications harness the advantages of quadrupedal systems. Due to the favorable
stability and performance properties, many researchers have been investigating
quadrupedal robots, which has made them the most complex legged locomotion
machines to date. (Raibert 1990) studied gaits of quadrupedal animals, such as
the trot, the pace and the bound. Based on this work, one of the most astound-
ing robots in terms of stability and flexibility was developed, Big Dog (Raibert
2008). This robot is able to surmount highly complex terrain and walk up and
down steep slopes. Many other similar quadrupedal robots have been developed
during recent years, e.g. StarlETH (Hutter 2012), which is a platform to study
fast, efficient and versatile locomotion, or HyQ (Semini 2010), a hydraulically
actuated quadruped robot.

1.2.2 Feedforward Controlled Robots

Without any sensory feedback, one is not able to determine what the robot is
doing at any time. If we were to construct a hopping robot for example, we
would have to make sure that the robot doesn’t fall down. This can be per-
formed by designing the robot in a way, such that its mechanical structure is
able to converge to a desired system state. If the robot’s mechanical structure
is preventing it from becoming unstable, it is called self-stable.

One branch of self-stable robots are passive dynamic walkers. The term was
introduced in (McGeer 1990) and comprises robots, which are driven by grav-
itational force. McGeer tested a bipedal robot, which was capable of walking

1Picture Source: www.bostondynamics.com, 9.28.2013.
2Picture Source: www.asimo.honda.com , 9.28.2013.
3Picture Source: www.ai.mit.edu , 9.28.2013.
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Figure 1.3: Illustration of various feedforward controlled robots. From left to right:
Passive dynamic walker1 , RHex2, Curved beam hopper3.

down a slope with a constant walking velocity and without falling over. No ac-
tuator was driving the robot, but only gravity exerted a force. Since McGeer’s
first study on passive dynamics, many have followed his concept and built more
efficient and faster legged walkers (Collins 2005). In (Owaki 2010) and (Owaki
2011), the limits for passive dynamics were pushed further away, as they man-
aged to build the first passive dynamic runner, being able to run stably for 36
steps. By adding feedback control to the hip position only, passive dynamic
running can get as fast as 35.4 km h−1, as shown in (Cotton 2012). In this
publication, the authors present an ostrich-like running robot, based on passive
dynamics.
The one drawback of passive dynamic walking and running is its high sensitivity
towards disturbances. A small bump on the ground is enough to push the robot
to its unstable region. A thorough analysis of stability for running robots has
been conducted in (Ringrose 1997). By combining a curved foot with a compli-
ant leg, a simple monopod was built, showing self-stabilizing properties as for
hopping height. However, the robot was just hopping in place and no forward
movement was achieved.

Moving away from passive dynamic running and walking, more robust and ver-
satile feedforward controlled robots can be found. One example of a simple but
highly robust and agile robot is RHex (Saranli 2001). This hexapod robot gives
a feedforward signal which drives six legs, each being moved by an individual
actuator. The legs are turning full cycle and a swing phase of the legs can
therefore be avoided.
The last type of open loop robots that will be discussed, is the one most related
to this thesis. The curved beam hoppers are exploiting the natural frequency
of the robot’s structure in order to hop (Reis 2011) or run (Maheshwari 2012).
They are built out of a bent elastic beam, where a DC motor is put on top. The
motor is rotating an eccentric mass, which, if excited at the right frequency,
makes the robot hop.
The investigations in this thesis will follow up on the research on the curved
beam hoppers. Feedforward control and its underlying principles will hence be
in the spotlight for the remaining parts of this report.

1Picture Source: www.ruina.tam.cornell.edu, 9.28.2013.
2Picture Source: www.bostondynamics.com , 9.28.2013.
3Picture Source: www.birl.ethz.ch , 9.28.2013.
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Chapter 2

Theoretical Background

As mentioned in the last chapter, this thesis will focus on the development
of a feedforward controlled robot. This field is broad and requires knowledge
of advanced theory in mechanical systems, such as self-stability, which will be
explained in section 2.4. In addition, the complexity of the dynamics of legged
locomotion and its physical interactions with the ground is very high. Since the
equations of motion change their internal structure as the state goes along its
predefined trajectory, it is hard to find analytical solutions for the problem at
hand. The change in the mathematical structure is caused by the alternation
from ground phase to flight phase and vice versa. What makes the problem
even more delicate are the impulsive ground reaction forces, which tend to
go to infinity for a vanishing time interval at impact. Therefore, a thorough
mathematical layout for this problem is the key to success.
In this chapter, simplified models and various aspects of legged locomotion
are presented, as well as the mathematical principles needed for the following
description of the model used in this thesis (see Chapter 3).

2.1 Spring Loaded Inverted Pendulum Model

One of the simplest model one can possibly use to describe some sort of gait is
a spring-mass system hopping in place (Blickhan 1989). If we had a point mass
of mass m, a spring attached to the point mass with stiffness k and the only
external force is gravity g, the resulting equations of motion in the case that
the spring is in contact with the ground looks as follows:

mÿ + ky = mg, (1)

where y is the distance of the point mass to the ground. Once the spring reaches
its relaxed length while accelerating away from the ground, it detaches and the
equations of motion change their internal structure:

mÿ = mg. (2)

As can be seen, the solutions of equation (1) and (2) are depending on each
other. After the ground phase cycle, the initial conditions need to be passed on
to the solution of the flight phase equation of motion and vice versa.
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Figure 2.1: Sketch of the spring loaded inverted pendulum (SLIP) model. The
landing angle γ is predefined and constant for each hop.

The above mentioned system is only valid for vertical hopping in place. If
one is interested in locomotion, forward speed is a crucial factor for a model.
By adding another dimension to the problem, we end up with the spring loaded
inverted pendulum model (SLIP). The equations of motion become non-linear in
the ground phase, as the spring force is no longer acting linearly on the spacial
states:

ẍ = xω2

(
l0√

x2 + y2
− 1

)
(3)

ÿ = y ω2

(
l0√

x2 + y2
− 1

)
− g. (4)

Note that x is the horizontal state of the point mass, ω =
√
k/m is the natural

frequency of the spring-mass system and l0 is the relaxed spring length. During
flight phase, the equations of motion for the y-direction stay the same as in
the simplified hopping model (2). For the x-direction, there is no change in
velocity, as no forces are acting in this direction. The switching condition from
flight phase to ground phase is given by a predefined landing angle γ, which is
set as a parameter in the beginning of the simulation. If γ hits the condition

y ≤ l0 sin γ, (5)

it is switched from flight- to ground phase. On the other hand, if the relaxed
spring length is reached during ground phase, i.e.

l0 <
√
x2 + y2, (6)

it is switched back from ground- to flight phase.

The same equations have been derived for a non-linear spring behavior in (Rum-
mel 2008). In this publication, a segmented leg was chosen with a rotational
spring stiffness between the thigh and the shank instead of a linear, straight
spring. Due to this manipulation of the model, lower speeds for self-stable run-
ning was achieved and the tolerated range of the landing angle was increased.
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Further literature on the SLIP model can be found in (Holmes 2006) and (Blick-
han 2007).

The advantages and limiting assumptions of the SLIP model have to be con-
sidered before using it for real world predictions. On the one hand, the model
provides a simple prediction of locomotion, which is capable of explaining many
phenomenons in animal- and human locomotion. On the other hand, the prede-
fined angle γ can only be guaranteed, if the animal or robot has a hip and is able
to control the landing angle by swinging the leg back to the desired position.
The terms ”control” and ”desired position” already imply feedback control. In
our case, the robot won’t have the opportunity to set the angle γ to a desired
state, as we won’t have any sensory feedback in our system. Hence, we will
need a model which does not require the value of γ at touchdown to be a priori
known. A more sophisticated model which satisfies our needs for self-stability
analysis will be presented in chapter 3.

2.2 Influence of Impacts on Efficiency

In this section, the influence of the impact on the cost of transport is ana-
lyzed. The cost of transport, an important dimensionless measure in terms of
locomotion efficiency in legged locomotion, is defined as

CoT =
Eexp

mg xend
, (7)

Where Eexp is the expended energy, m is the mass of the system, g is the
gravitational acceleration, and xend is the moved distance. If we assume now,
that at each hop, some energy is lost due to dissipation of kinetic energy at
impact, we can estimate the energy loss at each stride. The kinetic energy of
an arbitrary rigid body is defined as

Ekin =
1

2
mvT v +

1

2
ΩT ΘΩ, (8)

or for the planar case

Ekin =
1

2
mv2x +

1

2
mv2y +

1

2
ΘΩ2, (9)

where v is the velocity of the rigid body at the center of mass, m is the mass of
the body, Θ is the moment of inertia and Ω the angular velocity of the body.
In order to proceed, one needs to simplify this expression, as the dependence of
the tangential force on the normal force makes further simplifications hard to
accomplish. The lost energy is dependent on the normal force, the dynamic fric-
tion coefficient and the restitution factors in normal- and tangential direction.
One simple assumption we can make, is that only energy is lost in the vertical
direction to the ground, i.e. hopping motion in place. This would also corre-
spond to hopping with no friction on the ground, or a vanishing relative speed
at the touchdown point. This is the case when legged animals accelerate their
foot tip velocity to the relative ground speed during stance phase. Assuming a
Newtonian kinematic impact law with restitution factor εN in normal direction
to the contact point, the subsequent energy dissipation per touch down can be
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Figure 2.2: Theoretical lower bounds (eq. (13)) of the cost of transport as a function
of the jumping angle of the center of mass α. Different normal restitution factors εN
are plotted.

computed. Note that a detailed description of impact and frictional models is
described in section 3.5.

Eexp = E−kin − E
+
kin =

1

2
m (v−y )2

(
1− ε2N

)
, (10)

where a + sign indicates a quantity after impact, and - before impact, respec-
tively. If we now form the cost of transport into

CoT =
Eexp/∆t

m g xend/∆t
=

Pexp

mg vx
, (11)

and calculate the flight phase time of a body under influence of gravitational
acceleration g and with an initial velocity v by

∆t =
2‖v‖ sinα

g
, (12)

where α is the jumping angle of the center of mass at take off, the cost of
transport turns out to be

CoT =

(
1− ε2N

)
4

tanα. (13)

The shape of this function can be found in figure 2.2. Note that it only provides
a lower bound for the cost of transport for a real system, as there are more losses
than only for vertical hopping, e.g. frictional losses in horizontal direction or
internal damping losses in the joints.
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(a) (b)

Figure 2.3: (a) Sketch of the inverted pendulum model. the control input u is
stabilizing the system under the influence of gravity. Sketch (b) shows the self-stable
version of the inverted pendulum. The mechanical structure guarantees a stabilization
around the system’s equilibrium point.

2.3 Self-Stable Inverted Pendulum

A popular example for the possibilities of feedback control is the inverted pen-
dulum. It consists basically of a rod, which is being balanced on a moving
platform such that it doesn’t fall over. A simple mechanical solution to provide
self-stability for this system is to fix the rod on a platform, or to add a curved
structure at its bottom. The latter one should be analyzed in this chapter. In
figure 2.3, the set up of the structure is depicted. The rod is assumed to have
its center of mass m at its top end with distance to the ground h, and the radius
of the curved structure should be denoted with R. If we were to deflect to rod
from its equilibrium position φ0, there is a resetting force, which pulls the rod
back to its equilibrium position. The equations of motion of this system are

θ φ̈ = −mg (R− h) sinφ (14)

or for small deflections from the equilibrium position

θ φ̈ = −mg (R− h)φ (15)

Starting from the linearized system (15), the solution obviously becomes unsta-
ble if h is larger than R, as the resetting force vector pulls the rod away from
its equilibrium position. If the radius is equal to the distance of the center of
mass to the ground, then for all initial conditions φ0, we have an equilibrium
position. This case would correspond to the behavior of a wheel.
In addition, we can calculate the frequency, with which the rod is swinging
around its equilibrium position if it is deflected and no dissipation of energy
occurs. After forming the second order differential equation to a first order sys-
tem of differential equations and evaluating the determinant of the state matrix,

12



we’ll get for the rocking frequencies of the linearized rod system to be

ωr =

√
mg (R− h)

θ
.

The results of this section can be used to explain static stability and swing time
during stance phase of a curved foot robot.

2.4 Stability of a Mechanical System

The last section described a concrete example of a self-stable system, namely
the self-stable inverted pendulum. By showing its unstable counterpart, the
inverted pendulum, the definition of self-stablity becomes more intuitive. A
system is called self-stable if it is able to approach its equilibrium point without
the help of feedback control.

A mathematically more rigorous way of looking at stability can be done by
using the definition of Lyapunov, which says that if the initial condition x0 of
our system start in the neighborhood δ of the equilibrium point x∗, there exists
a bound ε which encloses the solution for all future times t in the state space x.
Or in other words

‖x0 − x∗‖ < δ ⇒ ‖ψ (t, t0,x0)− x∗‖ < ε ∀t > t0, (16)

where ψ is the solution of our system’s equation and t0 is the initial time.
Another important term is attractivity of an equilibrium. An equilibrium x∗ is
locally attractive if there exists a δ > 0 such that

‖x0 − x∗‖ < δ ⇒ lim
t→∞

‖ψ (t, t0,x0)− x∗‖ = 0, (17)

so if the solution ψ of our system approaches an equilibrium point as time goes
to infinity. If an equilibrium point is stable and locally attractive, it is called
locally asymptotically stable.

In this thesis, starting from the definition of Lyapunov, the jumping angle of
the center of mass at take-off α was found to be a good indicator of the system’s
state. If the jumping angle crosses a limit angle δ, the robot will fall and hence,
the system is unstable. Furthermore, if the jumping angle is converging to an
equilibrium state, the standard deviation σ of the average jumping angle will
be low. This means that σ can be used for an estimation of the system’s local
attractivity. Note that even though its mathematically not always correct to
call an attractive equilibrium point stable, small σ-valued simulations will be
called stable, as they won’t include simulations where the robot fell.

2.5 Mathematical Principles

2.5.1 Set-Valued Functions

A set-valued function can have one or more elements of the function’s domain,
whose image is not one single element, but a subset of the codomain. Or in
other words, given a function

f(x) = y, (18)
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Figure 2.4: Graph of the set-valued Upr- and Sgn functions. They will be needed in
section 3.5 to define ground contact forces.

where y ∈ Y and x ∈ X, a subset of Y might be assigned to one and the same
x.
From this definition, two important set-valued functions can be described:

Upr(ξ) =

{
(−∞, 0] if ξ = 0

0 if ξ > 0
, (19)

and

Sgn(ξ) =

 −1 if ξ < 0
[− 1, 1] if ξ = 0

1 if ξ > 0
. (20)

Upr is called a unilateral primitive, and Sgn is the set-valued signum function,
as described in (Glocker 2005). Those two functions will be used later on to
describe impacts and frictional forces mathematically.

2.5.2 The Linear Complementarity Problem

In optimization theory, the linear complementarity problem is an inequality-
constrained equation, which will be used in our case to relate the kinematic
states of our system during ground contact to the acting forces. It is defined as

y = A x + b (21)

y ≥ 0, x ≥ 0, yTx = 0, (22)

where A ∈ Rn×n and b, y, x ∈ Rn×1. If we define E := (e1, ..., en) the identity
matrix and A := (a1, ...,an), equations (10) and (11) can be rewritten as

(e1, ..., en,−a1, ...,−an)

(
y
x

)
= b, (23)

yi ≤ 0, xi ≤ 0, yixi = 0 ∀i = (1, ..., n) . (24)

Now be ci ∈ {ei,−ai} the i-th complementary pair of vectors, and zi ∈ {yi,xi}
the i-th complementary pair of variables such that

zi =

{
yi if ci = ei

xi if ci = −ai
. (25)

14



Now, given that ci can either be equal to ei or −ai, there are many different
combinations how we can build a matrix Ck := (c1, ..., cn) and a corresponding

vector Zk := (z1, ..., zn)
T

. In fact, 2n different combinations are possible and
will eventually limit the performance of the numerical procedure to solve the
linear complementarity problem. The derived results will be used in chapter 4.
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Chapter 3

Physical Model

After having covered the relevant theoretical principles in the last chapter, the
physical set-up of the robot can be tackled. In this chapter, after stating the
given knowledge and findings of previous work at the bio-inspired robotics lab
and extracting the needed objective for this project, the new physical model of
the robot to build is presented. Subsequently, system parameters, equations of
motions as well as ground contact interactions are defined.

3.1 Previous Work and Objective

During the last couple of years, curved beam hoppers have been found to satisfy
both, easy construction properties and high locomotion efficiency. Having said
that, the non-linear elastic behavior of the curved beam is an obstruction for
further numerical analysis and development. In addition, the actuation input
has to be chosen such that the natural frequency of the system is excited. In
(Mathis 2013), a hopper based on the curved beam is realized with rigid ele-
ments and variable motor input, as can be seen in figure 3.1. The resulting
segmented robot gets close to the efficiency and speed of the curved beam hop-
per. Even though the robot was designed using rigid elements, several parts
were still adding some unpredictable non-linearity to the system, such as the
bent aluminium coupling between the body and the foot. Due to the given
problems, the objective of this thesis cleared up: A hopping robot made out
of rigid elements should be designed, whose mechanical features allow a simple
mathematical and numerical analysis. Out of the simulation, real world be-
havior should be predicted accurately enough to show matching results to an
experiment. General conclusions for legged locomotion is an additional goal to
establish.

3.2 Approach

Biological systems come in handy if one is to optimize a desired task in robotics,
which has been already realized in nature. As legged locomotion is one of those,
it makes sense to study animal gaits and check if the prevailing laws can be
discovered and adapted to a robotic system. Since the hopping gait should be
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Figure 3.1: Illustration of the segmented beam hopper. Its model consists of 3 rigid
bodies, two linear springs, one torsional spring, and is driven by a sinusoidal input
torque.

realized, mainly two legged vertebrates are of interest, such as kangaroos, hu-
mans or birds. By studying the mechanics of hopping kangaroos (Alexander
1975), it became clear that a hip is crucial for defining the landing angle while
hopping. Without a hip, stable standing is hard to realized except if a stabi-
lizing structure like a wide foot is added, which will cause high impact losses
at touchdown. Having said that, by using light and stiff materials, the impact
losses are moderate and can be tolerated. In previous work, a large foot was
mounted to the robot’s body by a torsional spring. However, by using a spring,
the number of rigid bodies increases by one and renders the system analysis
more difficult. The advantage of the torsional spring was that first, it can help
to reduce impact losses by storing elastic energy and second, it guarantees a
necessary flexibility as for the varying landing- and jumping angle.
As this thesis aims at reducing the system’s complexity, an altered approach
for the design of the foot was sought. By choosing light materials for the shank
of the robot, direct impact losses become less important. The flexibility of the
jumping- and landing angle can be achieved without using a torsional spring:
If one uses a well designed curved foot, which is firmly attached to the shank,
a pitching motion of the robot during stance phase can be realized without the
usage of a spring and without expenditure of additional energy. For the afore-
mentioned reasons and for the sake of reduction of complexity, it was decided
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Figure 3.2: X-ray of a jumping kangaroo rat1. The orange drawing indicates a
possible model for the lower part of the hind leg.

to drop the torsional spring and examine the aptitude of a curved foot.

The remaining parts of the robot were defined easily. It should consist of a thigh,
where the main mass is added, and a light shank, which is rigidly attached to a
curved foot. A muscle-tendon like spring should be providing elastic suspension
of the main mass on top of the thigh. Note that the lower leg needs to have
a certain mass and inertia, since the pitching motion of the upper leg during
flight phase is depending on it, as was found by running various simulations.
This renders a challenging task of finding an optimal lower leg weight for low
impact losses and desired pitching motion during flight phase.

The force driving the robot is applied as a torque at the joint between the
lower leg and the upper leg. The trajectory of the motor torque was chosen to
be sinusoidal, which leads to the following function:

TM (t) = AT sin (ωT t), (26)

where AT is the amplitude of the motor torque, and ωT is its angular frequency.

3.3 System Parameters

Before the analysis of the equations of motion, the fixed parameters of the
system will be defined. Note that most of them have been set due to anatomical
properties of animals such as the kangaroo rat or intuition. see table 3.1 for the
list of parameters.
The spring stiffness k was chosen, such that the mass of the upper body could
be carried under the influence of gravity. The damping coefficient d was initially
chosen as in the previous project (Mathis 2013), but was later altered to match
the real world experiment. the geometrical parameters ll, lu, and lh were first
chosen to have the same proportions as a kangaroo (Alexander 1975). Later
they were iteratively adapted by running several simulations. The lower body
mass ml and mu, as well as the moments of inertia θl and θu were first assigned
by considering possible materials to use for the design and the known weight

1Picture Source: www.sci.uidaho.edu/McGowanLab, 9.29.2013.
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Table 3.1: Parameters and Variables of the robot model. The column ”Values” shows
the used numbers for the simulation and the experiment.

Fixed Parameters
Letter Name Value
k Spring stiffness 3022 N m−1

d Damping coefficient 0.06 N m s
ll Lower body length 0.2 m
lu Upper body length 0.16 m
lh Moment arm spring 0.05 m
ml Lower body mass 0.239 kg
mu Upper body mass 0.481 kg
AT Motor torque amplitude 0.5 N m
sf Foot length 0.2 m
xs1 Horizontal coordinate of lower leg center of mass −0.063 m
ys1 Vertical coordinate of lower leg center of mass 0.045 m
θl Lower body inertia 0.0015 kg m2

θu Upper body inertia 0.0016 kg m2

ϕ0 Initial Knee angle for relaxed spring 0.7853 rad
Tunable Parameters

fT Motor torque angular frequency 2 Hz - 6 Hz
R Foot Radius 0.2 m - 0.6 m
β Lower leg angle 0.4 rad -

1.2 rad
Minimal coordinates

x(t) Position x-value of lower leg COM m
y(t) Position y-value of lower leg COM m
ϕl(t) Lower leg angle rad
ϕu(t) Upper leg angle rad

Computed Variables
TM (t) Motor moment function N m
α(t) Take off angle of lower leg rad
ϕ(t) Knee angle rad
ωT (t) Motor torque angular velocity rad s−1

of the motor. The foot length sf was chosen intuitively. The motor torque
amplitude AT was first varied within a range of 0 to 1 Nm and was then later
found to show clear hopping heights for a value of 0.5 Nm. The coordinates
of the lower leg center of mass were needed, as the geometry of the robot is
referenced by those values. Finally, the initial knee angle ϕ0 for the relaxed
spring lenght concludes the list of fixed parameters.
All the remaining parameters were being changed for parameter studies during
the simulations, as will be described in section 7.2.

3.4 Equations of Motion

Having defined the parameters of the system, one can start to derive the equa-
tions of motion. One of the simplest ways in doing so, might be by exploiting
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Figure 3.3: Sketch of the the curved foot hopper model including the constant system
parameters in the left picture, and the changeable parameters and system states in
the right picture.

the simple structure of the Newton-Euler equations:

0 =

n∑
i=0

[(
JT
S ṗ + JT

R ṄS

)
−
(
JT
Q FA + JT

R MQ

)]
, (27)

where JS is the Jacobian of the center of mass of the ith rigid body, p is the
momentum of the same body, JR is its rotational Jacobian and ṄS its spin.
The external forces acting on the body are FA with its Jacobian JQ and the
moments MQ. Note that n is the number of rigid bodies in the system, and the
kinematics of the system are described in minimal coordinates q. The model
from which the equations were derived is shown in figure 3.3. The resulting full
equations of motion can be found in the numerical code of appendix C.2.

3.5 Ground Contact Interactions

The most tricky part in reaching a meaningful mathematical model is the in-
teraction with the ground. As this provides an instant change in the governing
equations of motion and in addition, leads to impulsive forces acting on the
robot, a sophisticated approach is crucial in order to obtain reasonable results.
(Glocker 2005) presented in his publication how two dimensional systems, which
are under the influence of structural changes in the differential equations due
to friction and impacts, can be treated in a mathematically elegant way. Note
that in this thesis, the system to be examined is assumed to have scleronomic
constraints, which simplifies some expressions in the following elaboration. For
rheonomically constrained systems, slight extensions need to be included (see
(Glocker 2001) and (Glocker 2005)).
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Given the set of minimal coordinates

q =


x
y
ϕl

ϕu

 (28)

of our system, where x and y are the horizontal- and vertical position of the
lower leg center of mass, respectively, ϕl is the lower leg absolute angle, and ϕu

is the upper leg absolute angle, as can be seen in figure 3.3. The equations of
motion have the form

M q̈(q, t)− h(q, q̇, t) = 0. (29)

By including impulsive forces in our system, we can find the following measure
equality for a dynamical system

M du− h dt− dR = 0, (30)

where M is the mass matrix, u is the velocity of the system in minimal coordi-
nates, h are the gyroscopic accelerations as well as smooth, generalized forces
and dR is the measure of the contact forces. By defining force laws for dR,
which depend on the system’s kinematic states,

dR =
∑
i∈H

wN dΛN + wT dΛT , (31)

where H is the set of closed contacts, wN and wT are the generalized normal-
and tangential force directions, respectively, and dΛN and dΛT are the contact
impulse measures in normal- and tangential direction, all the required dynamics
of the system are defined. What is missing are the kinematic force laws, that
express the acting impulses in terms of the kinematic states of the system. The
velocity difference before and after impact are given by

ξN := γ+N + εN γ−N , ξT := γ+T + εT γ
−
T , (32)

and
γN = wT

N u, γT = wT
T u, (33)

where γ+N and γ−N are the normal velocities to the ground after impact and before
impact, respectively, and εN is the restitution coefficient in normal direction at
impact. Note that the subscript T describes the same properties in tangential
direction to the ground contact point.
With the derived functions, it is possible to define a Newtonian kinematic
impact- as well as a coulomb frictional law for our system:

−dΛN ∈ Upr(ξN ), −dΛT ∈ µdΛN Sgn(ξT ), (34)

where µ is the dynamic friction coefficient of the system. Please recall the two
set-valued functions Upr and Sgn from section 2.5.1. Equations (28) − (34)
provide all relevant equations for the problem at hand. The only thing left
is to reformulate the equations in a way, which will make them easy to solve
numerically. The reader is referred to (Glocker 2005) for a detailed derivation
of the following linear complementarity problem for dynamical, non-smooth
systems:
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ξNξR
ΛN

 =

WT
N M−1 (WN −WT µ) WT

N M−1 WT 0
WT

T M−1 (WN −WT µ) WT
T M−1 WT I

2µ −I 0

ΛN

ΛR

ξN



+

WT
N M−1 h ∆t+ (I + εN )γA

N

WT
T M−1 h ∆t+ (I + εT )γA

T

0

 (35),

ξNξR
ΛN

 � 0

ΛN

ΛR

ξN

 � 0

ξNξR
ΛN

T ΛN

ΛR

ξN

 = 0. (36)

Equations (35) and (36) form the linear complementarity problem needed for
the ground contact forces. Hereby,

ΛR := µΛN + ΛT , (37)

ξT := ξR − ξL, (38)

ξR := WT
N uE + εT γ

A
T , (39)

where the superscript A in γA
T refers to the initial point of the numerical step,

and E as in uE to the end point, as will be discussed in the next chapter.
Note that most of the entries are now vector- or matrix valued, depending on
the number of closed contact points, i.e. if k contacts are closed in a system
with f minimal coordinates:

WN := (wNi1 , ...,wNik), WT := (wTi1 , ...,wTik) ∈ Rf×k

ΛN := (ΛNi1 , ...,ΛNik)T, ΛT := (ΛTi1 , ...,ΛTik)T ∈ Rk

γA
N := (γANi1 , ..., γ

A
Nik

)T, γA
T := (γATi1 , ..., γ

A
Tik

)T ∈ Rk

ξN := (ξNi1 , ..., ξNik)T, ξT := (ξTi1 , ..., ξTik)T ∈ Rk

εN := diag(εNi1 , ..., εNik), εT := diag(εTi1 , ..., εTik) ∈ Rk×k

µ := diag(µi1 , ..., µik) ∈ Rk×k.
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Chapter 4

Numerical Model

The last chapter described the physical set-up and models for the new robot.
Due to the system’s complexity, it quickly became clear, that the problem needs
to be tackled by a numerical simulation rather than analytical analysis. In this
chapter, the equations of motion (30) are reformulated in order to reach an
expression which allows finding a numerical solution for the given problem.
Furthermore, a procedure for finding a solution of the derived linear comple-
mentarity problem (35) and (36) will be presented.

4.1 Ground Contact Discretization

The crucial parameters for the ground interaction are the friction coefficient µ,
and the normal- and tangential restitution factors ε, respectively. Those two
parameters eventually define the forces acting from the ground on the robot
during stance phase, namely friction- and impact forces. The forces are trans-
mitted through the geometry of the interaction spot between the robot and the
ground. Those spots are called contact points and need to be placed on dis-
crete positions. In this simulation, n contact points were distributed equally
on the arced foot and on each point touching the ground, the forces had to
be calculated. Note that each contact point is assigned to a dynamic friction
coefficient µ, a normal restitution factor εN , and a tangential restitution factor
εT . Since it makes no sense to assign different values to the n contact points,
the named parameters were kept constant. See table 4.1 for the assigned values
of the contact point parameters.

4.2 Initial Conditions

For each simulation, the initial conditions were precalculated in order to start
from the robots static equilibrium position. This approach makes sense, since
the initial condition of the simulation will match with the experimental one.
The way the calculation was performed can be seen in appendix B. Note that
static equilibrium of the robot therefore becomes a necessary condition for the
simulation to be stable. If a given parameter set does not allow a statically stable
position of the robot, the simulation will classify this parameter set as unstable,
even though there might be a dynamically stable solution of this configuration.
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4.3 Time Stepping Algorithm

By defining a time stepping algorithm, it is possible to find the end states of an
iteration within six steps, as described in this section. A flow diagram depicting
the algorithm is shown in figure 4.1.

1. After choosing a time interval ∆t, define the midpoint time tM := tA + 1
2∆t,

and end time tE := tA + ∆t, where tA is the initial time of the current
iteration.

2. Define the midpoint displacement qM := qA + 1
2∆tuA ∈ Rf .

3. Calculate matrix properties at midpoint time

(a) M(qM , tM ) ∈ Rf×f , h(qM ,uA, tM ) ∈ Rf

(b) Out of i = 1, ..., n contact points, set up the index set H of all k
contacts i1, ..., ik that are currently closed

(c) Then, combining all i ∈ H , calculate WN (qM , tM ) ∈ Rf×k, as well
as WT (qM , tM ) ∈ Rf×k

4. Solve the linear complementarity problem (35) and (36) in order to get ΛN

and ΛR

5. Compute the end velocity of the iteration step uE

uE = M−1(WN −WT µ)ΛN + M−1 WT ΛR + M−1 h ∆t+ uA (40)

6. Compute the final state of the iteration qE := qM + 1
2∆t · uE ∈ Rf

4.4 Index Allocation

As described in the previous section under step 3, the contacts that are currently
closed need to be defined. First, a condition for a closed contact needs to be
set. The property of interest is in this case the distance between the ground and
the contact point of the robot, which will be denoted by gN . In the numerical
function (see appendix C.3), all the contact points are checked for their gN
value. If it is smaller than zero for the midpoint displacement, i.e. gN (qM ) < 0,
the contact needs to be included in the set H. Once all the closed contacts have
been found, the matrices WN (qM ) and WT (qM ) can be formed. The size of
the linear complementarity problem will depend only on the size of H.

4.5 Solving the Linear Complementarity Prob-
lem

After the index-allocation, the linear complementarity problem can be formed
with equations (35) and (36). In section 2.5.2, it was discussed how the linear
complementarity problem can be rewritten. Recall that

Ck Zk = b. (41)
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Table 4.1: Parameters and Parameter values needed for the numerical procedure and
contact force computation.

Ground Contact Parameters
Letter Name Value
µ Dynamic friction coefficient 0.3
εN Normal restitution factor 0
εT Tangential restitution factor 0

Numerical Parameters
N Number of iteration steps 10000
n Number of contact points 10
∆t Integration step 0.0005

As we’ve seen, Ck and Zk can be formed in 2n different ways, and some of these
combinations solve the linear complementarity problem. The easiest but most
tedious way, is to compute all possibilities enumeratively, i.e. by trying. As
in our model it is assumed that only two contact points can be touching the
ground simultaneously, the numerical effort to solve the linear complementarity
problem is reasonable, and simulations were found to be performed faster than
real time on a normal PC. The Matlab code for solving the LCP can be found
in appendix C.4.

4.6 Simulation Summary

On first glance, the physical equations and numerical procedures look utterly
confusing and complicated. It takes undeniably some time to get used to the
linear complementarity problem and non-smooth mechanics, but the benefits
of such a method can be highly rewarding. Once the framework is set up, one
can simply change the basic equations of motion (29) and redefine the contact
points in order to run the new simulation. Furthermore, and this point might
be the most valuable, one knows exactly what the code is doing and where its
restrictions are. To sum up, a review of all steps for the simulation is presented
in this section.
We’ve started with a model of our robot made out of rigid bodies, springs and
dampers. Once the model is set, the equations of motion have to be derived
in minimal coordinates q, using the Newton-Euler equations or alternatively,
the Lagrange equations. From this, we can extract the mass matrix M and the
gyroscopic acceleration- and smooth force terms, h. The contact points which
will interact with the ground (or any other wall restricting the robot’s motion)
have to be defined by a distance function gN which defines the contact to be
active if it is negative or equal to zero. Now, the numerical code is executed
and is checking for closed contacts. If some contacts happen to be closed, the
index set H needs to be formed, which contains information on closed contacts.
The generalized force direction matrices WN and WT will be computed, out of
which the linear complementarity problem (LCP) is be formed. The LCP solver
tries to find a solution for the given problem in order to obtain the contact forces
in tangential- and normal direction. If no solution is found, the time step of
the last simulation is altered slightly and is recomputed. The resulting forces
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Figure 4.1: Illustration of the numerical procedure for the simulation. If the robot
is in flight phase, the described time-stepping algorithm is simply integrating the
equations of motion numerically. The non-trivial part comprises the computation of
the contact forces dR, given that the robot is touching the ground.

can then be inserted into the equations of motion, which can now be integrated
numerically. Finally, the new states for the next iteration step are available and
the procedure starts over again.
The full code for the numerical simulation is presented in appendix C.
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Chapter 5

Realization of CHIARO

After having implemented the theoretical framework for the simulation, first
results indicated promising behavior of the robot. This was the hint needed
that a real world robot of the described system could actually perform the
desired hopping motion.
In this chapter, the realization of the model to a real world system is presented.
First, the computer-aided design (CAD) model is introduced and second, the
materials and devices used for this robot are described.

5.1 CAD Model

The theoretical model of a system is often hard to design, as certain assumptions,
simplifications and ideal properties are hard to realize in a robot prototype.
First of all, the model assumed only a two dimensional world, where no sideway-
motion is possible. However, since our world is three dimensional, we can not
simply neglect this spacial direction. In fact, not only the lateral displacement
and motion of the robot is neglected, but also the pitching and rolling motion.
In order to suppress unstable movements of those degrees of freedom, the robot
is added two parallel feet, which make it hard for the robot to turn and fall
sideways. The distance between the two feet was chosen sufficiently long, such
that stability was guaranteed, but enough short to avoid excessive material us-
age. A distance of 0.2 meters was assumed to lead to desirable results.
The lower body of the robot was designed in a way, which provides light con-
struction and robust properties. As this part is exerted to pure impacts with the
ground without restitution of energy by a spring, light and stiff construction is
key. Two pipes are connecting the lower leg with the two feet. Inside the pipes,
husks were inserted on each side with a M5 thread, in order to quickly mount
different kind of foot shapes to the robot. The two connecting pipes of the feet
are attached to the lower leg, which is connected by the rotational joint, real-
ized with two ball bearings, to the upper leg, in order to reduce friction losses.
Furthermore, a gear-wheel is rigidly attached to the lower leg, which ensures a
high transmission from the motor linked to it with a gear belt. The gear ratio
is necessary, since the used EC motor (see next section) runs with a higher ef-
ficiency at higher angular velocities. Two springs are connected symmetrically
to the lower leg. One is attached at the very top of the pipe and the other one
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Figure 5.1: Illustration of the CAD model of CHIARO.

in the middle. Together, they form a push-pull spring, which is equivalent to
the theoretical model as will also be discussed in the next section.
The upper leg is attached to a linking body, which encloses the two ball bearings.
On the other side of the upper leg, the motor holding structure is mounted.
The motor hold is adapted to the used motor, such that it can be attached
firmly to it. The shaft is supported on its tip with a ball-bearing in order to
reduce radial load from the gear belt. On the shaft of the motor, a pulley is
fixed with a grub screw, enabling transmission of the motor torque from the
upper leg to the lower leg by using a gear belt. In addition, two screws are
mounted to the motor hold, which are the supporting structures for the springs,
originating from the lower leg. See figure 5.1 for an illustration of the described
model. Note that all parameters stayed the same as in section 3.3.

5.2 Used Material

As light and stiff properties are required for the lower foot, it was decided to
use thin walled carbon fiber tubes. Their low density and high robustness offers
desirable properties for the required specifications. The feet were chosen to be
made out of plywood, as it can be processed easily and has stable and light
material properties.
Next to this, there was the opportunity to use a 3-D printer. For parts which do
not require a high tensile strength and have a complex structure, the material
(polylactic acid, PLA) was used for the printed parts. Namely the joint between
the lower leg and the upper leg, as well as the gear-wheel (150mm diameter)
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Figure 5.2: Illustration of real robot prototype.

were formed with that method.
The upper leg was again built with carbon fiber tubes, as there was material
left from the lower leg.
For the motor hold, first attempts with PLA didn’t reach the required precision.
Since the mass of the upper leg is suspended with a spring, a denser material
won’t necessarily change the overall efficiency of the robot. Due to this fact, it
was decided to use an aluminium structure instead of PLA, which will provide
both, the required stability and precision.
As might be remembered from the previous chapters on the model description,
a push-pull spring was assumed for the realization of the linear suspension. As
it is hard to find push-pull springs in reality with a linear force-displacement
relationship, two pull steel springs were symmetrically mounted instead, as can
be seen in figure 5.2.
The most important part of the robot is its actuation system. The used motor
is a Maxon EC 45 Flat with 70 Watts of power. The motor current is controlled
by a ESCON 50/5 module. The pulley to transmit the force from the motor to
the gear belt is made out of aluminium (12mm diameter).
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Chapter 6

Experimental Conditions
and Set-Up

In the last chapters, theoretical models have been described, and the realization
of the first robot prototype was shown. Everything is ready to plan a proper
experiment to analyze the influence of the robot’s design on its dynamics.
In this chapter, the settings and conditions for the experiment, as well as the
simulation are explained.

6.1 Simulation

The parameters for the simulation were kept as described in section 3.3. How-
ever, several other parameters come into play when one is to run the numerical
simulation. As mentioned in previous chapters, the model assumes a Newto-
nian kinematic impact- and a Coulomb frictional model. Those two assumption
add additional three parameters to each contact point, namely µ, the dynamic
friction coefficient, εN , the normal restitution factor, and εT , the tangential
restitution factor. A rigid body without elastic properties is assumed. As has
already been listed in table 4.1, εN = εT = 0 seems an appropriate assumption
for the given problem. The estimation for the friction coefficient is a harder
task to accomplish. It was set to a value of µ = 0.3, as this can be related to
wood sliding on stone or wood.
Due to the curved shape of the robot’s foot, the contact points on the foot need
to be arranged in a way, such that they form an arced shape. The discretization
can’t be performed arbitrarily exact, as this would require a large number of
contact points. However, assuming that the foot’s shape is convex, only two
neighbouring contact points can touch the flat ground at the same time. Due to
this fact, it makes no difference for the implementation of the numerical proce-
dure as for how many contact points are mounted to the foot. Having said that,
when the midpoint displacement is calculated with a incremental time step ∆t,
more than two contact points might fall below the ground, depending on the
given initial velocity qA. In order to avoid this problem, either the contact point
number needs to be lowered, which will lead in polygonal shape rather than an
arc, or the incremental time step ∆t needs to be refined, in order to make sure
that not more than two contact points get closed at the same time. The simu-
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Figure 6.1: Convergence of the mean squared error of the hopping height y as a
function of the number of contact points n at the robot’s foot. Reference value is a
simulation with n = 20. A contact point number of n = 10 was therefore found to
lead to accurate results.

lation showed appropriate convergence and performance for a ∆t = 0.0005 and
a number of contact points on the curved foot of n = 10.
The last property of the simulation is the number of time steps, which defines
the overall simulation time. A number of N = 10′000 was found to provide fast
simulation without slowing down the computer due to storage allocation.

Note that for each simulation, and therefore also each experiment, the initial
position of the robot is its static equilibrium. Hence, a transition phase from
standstill to stable hopping occurs at every simulation.
Furthermore, energy losses occurred only in the rotational joint due to joint fric-
tion, and when impacts influenced the system. Motor- and gear losses, friction
in the spring joints and aerodynamic drag were neglected.

6.2 Experiment

After having simulated the robot’s motion, it is compared with experimental
measurements. So far, it is not necessarily known if the simulated results have
any relevance for the real physical system and if the made assumptions hold. In
this section, the experimental environment and conditions are described.

As shown in the previous chapter, the motor used is a Maxon EC 45 Flat with
70 Watts of power, controlled by an ESCON 50/5 module. The trajectory of the
motor current is set by a desktop computer, executed by Matlab, which sends its
signal to a National Instruments SCB 68 digital-analogue converter. The ground
on which the robot is hopping is wooden and flat. The energy source of the mo-
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Figure 6.2: Experimental set-up of the robot.

tor is provided by a power source of 50 Volts. The signals and power sources
are attached to the robot by a long cable, which enables the robot to move
freely. An overview of the set up can be found in figure 6.2. Note that the cable
from the voltage supply to the motor was suspended during the experiment, as
otherwise it would have had a non-negligible influence on the measured results.

The cost of transport of the system can be measured by taking the energy
expended by the motor and dividing it by the weight of the robot times the
travelled distance, as has been presented in section 2.2.
The expended energy of the motor can be computed by taking the current
flowing through the motor times the voltage drop. A peculiar thing about elec-
tronically commutated (EC, or brushless DC motors) is its input signal. A
pulse-width modulation (PWM) signal is used to establish a desired voltage sig-
nal in the three motor windings, as is described in detail in appendix E. In the
real world experiment, the voltage was measured of only one motor winding.
As always two windings are turned on at the same time, the resulting power or
one motor winding needs to be multiplied by two, which leads to the following
cost of transport:

CoT =
2
∫
t
Vw Ic dt

mg xend
, (42)

where Vw is the voltage measured at one motor winding and Ic is the controlled
current. Note that the input current was thought to match the actual current,
which seemed to be an appropriate assumption. The trajectory of the current
was chosen to be sinusoidal, such that a sinusoidal torque trajectory would drive
the robot:

Ic = Ac sinωc t (43)

Since the PWM signal measurement of the motor winding was corrupted by
noise due to its fast switching, the signal needed to be filtered. See also Fur-
thermore, the SCB 68 digital-analogue converter (also DAQ for data acquisition)
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Figure 6.3: RC-Filter and voltage divider of the experimental set-up. RRC = 1.2 kΩ,
CRC = 47µH. See also appendix E for its application.

can only measure up to 10 volt, which made it necessary to add a static voltage
divider. An overview of the electronics can be found in figure 6.3. Note that
the voltage divider decreases the voltage by a factor of 5:

Vout = Vw1
RL

RL +RH
, (44)

where Vw1 is the motor winding voltage, RH = 100 kΩ, RL = 22.1 kΩ, and Vout
is the measured voltage in the DAQ.

In order to get the motion of the robot into digital data, an OptiTrack mo-
tion tracking system was used. Using 12 cameras placed on top of a 10 cubic
meter room and placing 9 trackables on the robot’s structure, the motion was
recorded.

33



Chapter 7

Results

In this chapter, the findings of the simulation described in the last chapter are
presented. First however, to show that the simulation has any significance, it is
compared to corresponding experimental measurements.

7.1 Verification of the Simulation

Two experimental measurements and two simulations with the same parame-
ter settings are compared in this section. It is assumed, that if the two mea-
surements match the simulation results, further simulation can be assumed to
provide significant results without having to show the corresponding experi-
ment. As measurements take a much longer time to conduct, simulations are
the preferable choice for analysis. In fact, a simulation of five seconds in real
time, takes only about three seconds on a standard PC. On the other hand,
setting up a proper experiment can take up to one hour and more including the
evaluation of the states during five seconds of experiment. Hence, given that a
simulation takes 1200 times less time to conduct, it is much easier to analyze
large sets of parameters, which will provide insights into the dynamics of the
robot.

As there are 17 parameters (see table 3.1) which influence the dynamics of
our system, a non-feasible amount of simulations would need to be performed
if one wants to find out the influence of the parameters. A reduction of the
parameters to analyze is a necessary condition to find powerful statements. It
was decided to choose parameters for the examination, which are easily changed
in the experiment. For example, exchanging the pipe of the lower leg is hard to
accomplish, as it is firmly fixed to other parts of the robot. On the other hand,
we have parameters such as the frequency of our sinusoidal current input, which
can be changed within a second. From this perspective, the following variable
parameters were chosen to be analyzed for their impact on the dynamics:

• Current frequency fT

• Foot radius R

• Foot to lower leg angle β

34



-0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

x(t)

y(
t)

Simulation

Measurement

Figure 7.1: Comparison of the simulation trajectory with the corresponding exper-
imental findings. fT = 3.4 Hz, R = 0.3 m and β = 1.05 rad. Other parameters as in
table 3.1.
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Figure 7.2: Comparison of the simulation trajectory with the corresponding exper-
imental findings. fT = 4.3 Hz, R = 0.6 m and β = 0.9 rad. Other parameters as in
table 3.1.

Note that the robot was built in a way, which enables it to easily mount and
dismount the feet. By manufacturing feet with different radii R, they can be
changed in a short period of time. Additionally, the lower leg angle β depends
on the through hole on the foot and is therefore quickly changed by drilling a
new hole. The amplitude AT of the torque signal was not chosen to be one of
the changeable parameters due to missing time.

Two parameter sets have been simulated and verified experimentally. The first
parameter set with fT = 3.4 Hz, R = 0.3 m and β = 1.05 rad, as can be seen in
figure 7.1, shows a matching trajectory with the motion tracking measurement.
The given conditions lead to a stable hopping pattern after a short transition
phase from standstill. Due to high noise in the OptiTrack system, some inconsis-
tencies arised in the measured tracking position. Nevertheless, the measurement
strongly supports the simulated result.
The second parameter set showed more chaotic properties than the first one.
With fT = 4.3 Hz, R = 0.6 m and β = 0.9 rad, the transition phase took much
longer to change into a stable motion. As shown in figure 7.2, the measure-
ment and the experiment start to show the same pattern not before a distance
of 0.4 meters was covered. the reason for these diverging results might come
from manufacturing imperfections, parameter variances or unmodeled effects.
Having said that, the matching results after some steps even with this chaotic
transition phase, strongly indicate that the simulation is able to describe the
real robot’s motion.
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Figure 7.3: Simulation of the whole parameter space. Dots indicate stable runs,
white areas unstable ones. The intensity of the dots’ color is dependent on the standard
deviation σ of the jumping angle α at takeoff of each hop, which gives a measure for
attractivity of the fixed-point of α.

7.2 Simulation Results

Having shown that the experiment supports the simulated results, one can start
to further investigate in simulation studies. Each of the three parameters men-
tioned in the last chapter was assigned to a discrete set of values, which spanned
a parameter space to be tested, i.e.

• fT ∈ {2, 2.1, ..., 6.9, 7}Hz

• R ∈ {0.2, 0.3, 0.4, 0.5, 0.6}m

• β ∈ {0.4, 0.45, ..., 1.15, 1.2} rad

These parameter sets lead to a total number of 4000 combinations, each of which
takes approximately three seconds to simulate. After each simulation, the re-
sults were saved in a data file. The most important measures for the following
analysis were the jumping angle of the center of mass at take-off α (see figure
3.3), its standard deviation σ, the cost of transport CoT and the average for-
ward velocity component of the robot, vx.
Figure 7.3 shows the obtained results for different R, fT and β. Each plot shows
results for a different foot radius R, and value ranges of the standard deviation
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Figure 7.4: Jumping angle α versus the cost of transport. Black crosses indicate a
faster convergence to the fixed point of α. The full line indicates the theoretical limit
of the cost of transport, derived in section 2.2.

σ are indicated, which give a measure for stability as has been discussed in
section 2.4. Note that the whole parameter space has been computed. Areas
in the plots where no dots are drawn indicate a fall of the robot at any time
during the simulation. Drawn dots, on the other hand, indicate a run, where the
robot was able to stand throughout the simulation. What is most conspicuous
is the broadening cloud depending on the foot radius. At smaller radii (or larger
curvature), a narrow band of hopping without falling can be observed. As we
go to larger radii, areas where the robot fell become smaller and smaller. This
can be easily understood by the theoretical background from section 2.3. As
the distance of the center of mass to the ground shifts below the foot radius,
the system becomes statically unstable.
Another interesting behavior is the migrating stable hopping region with in-
creasing foot radius. While the stablest hopping motion of the R = 0.2 m plot,
which is indicated by a small standard deviation of the jumping angle, is around
fT = 3.2 Hz and β = 0.9 rad, the stable region moves gradually to higher fre-
quencies and smaller β angles. In fact, the most stable region for the R = 0.6m
plot turns out to be around fT = 4.3 Hz and β = 0.6 rad.

The most interesting simulations are the ones indicating stable hopping pat-
terns. The standard deviation of the jumping angle of the center of mass is a
good measure to reveal stable hopping if a period-one pattern is created. How-
ever, it doesn’t necessarily show period-two patterns, i.e. motions where every
second jump shows the same jumping angle, but also odd numbers have a dif-
ferent but constant jumping angle. In the following analysis, only period-one
patterns were uncovered.
By filtering the simulations for their standard deviation of the jumping angle,
namely by ignoring all σ ≤ 10, and requiring that the simulation shows at least
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crosses indicate a faster convergence to the fixed point of α.

10 consecutive hops, truly stable hopping patterns can be found.
Figure 7.4 shows the distribution of those points in a graph, related to the
jumping angle α and the cost of transport CoT . Furthermore, the derived lower
bound for the cost of transport from section 2.2 is included. Obviously, simu-
lations with stable hopping patterns seem to follow the path of the predicted
lower bound. Furthermore, stable hopping simulations showed the highest en-
ergy efficiency.
In figure 7.5, the relation between the jumping angle α and the average forward
velocity vx is plotted. As can be seen, an almost linear relationship for stable
hopping motion is visible.
An interesting question to ask is, if there were any parameters that have a direct
influence on the jumping angle. If so, a feedforward controlling parameter could
be found which can set the desired end velocity of the robot. As can be seen
in figure 7.6, the relative angle between the lower leg and the foot, β comprises
exactly those properties. For example for a foot radius of 0.3, the relationship
between the jumping angle of the center of mass and the β angle is almost lin-
ear. As the frequency range of the stable hopping solutions is rather narrow, it
can be assumed, that the β angle can be changed without having to adapt the
motor frequency fT . This would mean, that a feedforward tuning parameter
has been found, which ensures a certain hopping velocity with a stable hopping
pattern.

38



40 50 60 70 80 90
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

α [°]

β
[r

ad
]

R = 0.2 - 0.6 m

R = 0.3 m

Figure 7.6: Jumping angle α versus the foot to lower leg angle β. All data points
have a standard deviation σ of the jumping angle α smaller than 10. Black crosses
indicate results of the parameter space, where R = 0.3.

39



Chapter 8

Conclusion

The main objective of this thesis was to investigate the self-stable properties
of a hopping robot. Starting from previous, similar robots, the structure was
simplified as much as possible, in order to making the dynamics of the system
more transparent as for parameter influences. The reduction of the foot spring
to a curved foot lead in fact to a reduction of the dimension of the equations of
motion, but it added the foot radius R to the long list of system parameters.
After studying possible methods of analyzing non-smooth mechanical systems
analytically as presented in (Leine 2004) or (Leine 2008), it quickly became
clear, that even for a simple system as it is dealt with here, it is nearly impos-
sible to read the intrinsic, self-stable properties from the equations of motion
directly.
To gain insights into the dynamics of the system, a more heuristic approach
was needed. As one of the goals is to achieve high energy efficiency of the
robot’s locomotion, it makes sense to focus on the cost of transport and find
its influencing parameters. By assuming that there are mainly impact losses
in normal direction while running, a relationship between the jumping angle α
of the robot’s center of mass and the cost of transport has been found. The
derived function provides a lower bound for the cost of transport, which can not
be overpassed in a real system.
Subsequently, a numerical model was developed to analyze the motion of the
designed robot. As was shown in the last chapter, it was possible to validate the
simulation’s result with an experiment. Stable hopping patterns were found to
be bound by a lower limit of the cost of transport, as predicted in the theoret-
ical, simplified model of section 2.2. This strongly indicates, that even though
the considered problem inhibits a detailed analysis of the equations of motion
due to its structural changes of the differential equation and its high degree of
non-linearity, it still obeys basic rules and principles.
Starting from there, one can ask the question if it is possible to find parameters,
which show stable hopping for certain regions of the parameter set. By defining
the standard deviation of the jumping angle α as a measure for stable hopping,
It was possible to find such sets. What is most intriguing, is the fact that stable
hopping patterns show the lowest cost of transport, i.e. are the most efficient
ways of locomotion. Consistency of the jumping angle α seems to be the key to
efficient locomotion.
The speed of the robot was found to be hard to control by changing the energy
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put into the system. For example the relation between forward speed and en-
ergy put into the system is nowhere near to linear, and it is not even clear, if
an increase of the motor torque will lead to more stable- or unstable hopping
pattern. However, by changing geometrical system parameters such as the foot
radius R or the angle between the lower leg and the foot β, which corresponds
to a shift of the center of mass in static equilibrium, the speed can be varied
with an almost linear relationship and without the use of any feedback control.

Possible future projects might want to analyze the influence of the center of
mass relative to the ground contact point, as this parameter was found to have
a significant influence on the resulting motion pattern. Furthermore, it might
be highly interesting to add a hip to the system to stabilize slight changes of
the jumping angle by a feedback controller. The system might then be operated
in a hybrid way, i.e. is using the hip correction for rough terrain and when
the robot is hopping on a flat path, switch to the energy efficient feedforward
control with the self-stable properties of the robot.

Feedforward controlled robots have the ability to move with an efficiency close
to biological systems. Even though they are lacking of flexibility and versatility,
understanding their dynamics can help feedback controlled systems to minimize
the effort of controlling the locomotion of a highly non-linear system, such as a
hopping robot.
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Appendix A

List of Symbols and
Abbreviations

A.1 Superscripts

+ property right after impact

- property right before impact

* Equilibrium

A property at initial iteration

M property at midpoint iteration

E property at end of iteration

A.2 Subscripts

0 initial condition or relaxed spring position

i iteration or element counter in vector or matrix

k complementary element counter

l lower body

N Normal direction

s1 lower body center of mass

T Tangential direction

u upper body
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A.3 Greek Letters

α jumping angle of the center of mass at takeoff

β lower body to foot angle

γ landing angle of SLIP model or contact point speed

γ contact point speed vector

δ neighbourhood equilibrium point

ε restitution factor

ε diagonal restitution factor matrix

ε bound of equilibrium point

ζ turning angle for static equilibrium

θ planar moment of inertia

Θ 3D moment of inertia

dΛ contact impulse measure

Λ contact impulse measure vector

µ dynamic friction coefficient

µ diagonal dynamic friction coefficient matrix

ξ velocity difference before- and after impact

ξ velocity difference before- and after impact vector

σ standard deviation of jumping angle α

φ state angle SSIP

ϕ robot knee angle

ϕ0 initial knee angle for relaxed spring

ϕ robot body absolute angle

ψ system solution

ω natural frequency of spring-mass system

ωr rocking frequency of the linear SSIP model

ωT torque angular frequency

Ω planar angular velocity

Ω 3D angular velocity
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A.4 Latin Letters

ai entry i of matrix A

A quadratic matrix of the linear complementarity problem

AT torque amplitude

b vector of the linear complementarity problem

ci complementarity cone element i

Ck complementarity cone k

d damping coefficient

ei entry i of matrix E

E identity matrix

Eexp expended energy

Ekin kinetic energy

fT motor torque frequency

f minimal degrees of freedom of the system

F force

g gravitational acceleration

gN distance between ground and contact point of robot

h center of mass to foot height

h gyroscopic accelerations and smooth forces

J jacobian

k stiffness coefficient

l0 relaxed spring length

l robot body length

lh robot moment arm spring

m mass

M mass matrix

MQ moment

n number of contact points on arced foot

N number of iterations in simulation

N spin
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p momentum

Pexp expended power

q system state in minimal coordinates

r position vector

R radius

dR atomic non-smooth force measure

sf foot length

∆t time increment

t time

TM motor torque

u velocity of system state in minimal coordinates

v speed

v 3D velocity

w generalized force direction

W generalized force matrix

x horizontal displacement

x system state

xend traveled distance

x complementary variable

X set including x

y vertical displacement

y complementary variable

Y set including y

zi complementarity vector element i

Zk complementarity vector k

A.5 Special Symbols

H set of closed contacts

R real numbers
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A.6 Abbreviations

BLDC Brushless DC Motor

CAD Computer Aided Design

CHIARO C-shaped Hopping and Impact Adapting RObot

CoM Center of Mass

CoT Cost of Transport

DAQ Data Acquisition (device)

DC Direct Current

EC Electronically Commutated (motor)

EoM Equations of Motion

LCP Linear Complementarity Problem

PC Personal Computer

PLA Polylactic Acid

PWM Pulse Width Modulation (signal)

RC Resistor-Capacitor (filter)

Sgn Set valued Signum function

SCB Shielded desktop Connector Block

SLIP Spring Loaded Inverted Pendulum (model)

SSIP Self Stable Inverted Pendulum

Upr Unilateral primitive function
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Appendix B

Static Equilibrium Position

Given a foot to lower leg angle β, the static equilibrium position of the robot
changes. The position is needed for the start of the numerical simulation. Also,
the equilibrium position is the starting point for the experimental measure-
ments.
The equilibrium point of the foot is located, where an extension of the vector
from the curved foot rotational center to the center of mass of the robot touches
the foot arc.

Figure B.1: Illustration of the new equilibrium position C of the curbed foot for a
changing center of mass (CoM).

As shown in figure B.1, we’ll need to find the angle ζ, that describes the ro-
tational angle between the standard initial condition, where the center of the
curved foot O is touching the ground, and the static equilibrium position, where
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the new point C is touching the ground. Given

rO =

(
0
0

)
, rOA =

(
0
R

)
, rCoM = rB , rC ,

we can find the angle ζ easily by

ζ = cos−1
(

rAO · rAC

‖rAO‖‖rAC‖

)
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Appendix C

Numerical Code

The numerical code for the simulation was implemented in Matlab. One param-
eter file, an executive file, a function for the index allocation and another one for
solving the LCP form all needed parts. If all four files are saved in the executive
folder and the Run DS.m file is executed, the simulation will start automatically.
in the Parameters.m file, system properties can easily be changed.

C.1 Parameters.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Robot Leg with Curved Foot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Fabio Giardina 2013 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear all
close all
clc

% All values in SI units

%% Simulation settings
dt_i = 0.0005; % Time increment [s] and integration step
N = 10000; % Number of iterations
zz_top = 20; % Number of time to change time increment when

% no solution for the LCP was found

%% Animation settings
kk = 400; % Number of pictures to be taken throughout

simulation
ww = 2.2; % Window width
wh = 0.4; % Window height

%% Geometry
l_l = 0.2; % Length , lower leg
l_u = 0.16; % Length , upper leg
l_h = l_l /4; % Length , moment arm spring
l_D = l_l/2 - l_h; % Length , distance CoM lower leg to knee joint
phi_l_0 = pi/4; % Angle , (relaxed spring) lower leg
phi_u_0 = pi/4; % Angle , (relaxed spring) upper leg
dff = 0; % Shift , foot relative to lower rod

A_IL0 = [cos(phi_l_0),sin(phi_l_0);... % Rotational matrix , lower leg
-sin(phi_l_0),cos(phi_l_0)]; % to inertial coordinate frame

A_IU0 = [cos(phi_u_0),-sin(phi_u_0);... % Rotational matrix , upper leg
sin(phi_u_0),cos(phi_u_0)]; % to inertial coordinate frame
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r_sl = A_IL0 ^ -1*[ -0.0628469;0.044985]; % Position vector , CoM CAD data

r_ml = A_IL0^-1*[-l_l/2* cos(phi_l_0);... % Position vector , middle
l_l /2*sin(phi_l_0)]; % of lower tube

r_G = r_ml + [-l_l /2;0]; % Position vector , end of lower tube
l = r_ml - r_sl; % Vector , CoM lower leg to middle of lower tube
l_G = l_u; % Length , CoM upper leg

%% Inertias
m_l = 0.239; % Mass , lower leg
m_u = 0.481; % Mass , total upper body

J_l = 1471*10^ -6; % Moment of inertia , lower leg
J_u = 1579*10^ -6; % Moment of inertia , upper leg

%% Force elements
k = 3022; % Linear stiffness , spring
d = 0.06; % Linear dissipation , damper
g = 9.81; % Acceleration , gravity
r_g = 155/12; % Ratio , gear
Am = 4/10*0.95; % Current , motor current amplitude
t_c = 0.131; % Constant , torque constant
A_T = r_g*t_c*Am; % Moment , amplitude of motor moment
T_del = 0; % Iteration , time delay of motor moment
omega_T = 3.4*2* pi; % Angular frequency , motor
phi_r = pi; % Angle , phase shift motor

%% Contact parameters
eps_N = 0; % Normal restitution
eps_T = 0; % Tangential restitution
mu = 0.33; % Friction coefficients

n = 10; % Number of contact points at foot (counted from
left to right)

R = 0.3; % Length , foot radius
s_f = 0.2; % Length , secant of the foot
b_i = s_f/n;
alpha_i = b_i/R; % Angle , angle between contact points on foot arc
beta = 1.05; % Angle , relative angle between foot and lower

leg

%% Static Equilibrium
% See appendix XX of Master thesis (ETH Zurich , Fabio Giardina 2013)

r_sl1 = [ -0.0628469;0.044985]; % Initial position of CoM lower
% leg in CAD model from ground

A_IL0 = [cos(beta),sin(beta);... % Rotational matrix , lower leg
-sin(beta),cos(beta)]; % to inertial coordinate frame

A_IU0 = [cos(pi/2-beta),-sin(pi/2-beta);... % Rotational matrix , upper leg
sin(pi/2-beta),cos(pi/2-beta)]; % to inertial coordinate frame

A_beta = [cos(pi/4-beta),-sin(pi/4-beta);...% Rotational matrix , lower leg
sin(pi/4-beta),cos(pi/4-beta)]; % to foot angle coordinate frame

r_om = A_beta*(-r_sl1)+ A_IL0*[-l_l /2;0]; % Position , middle point lower
% leg

r_op = r_om + A_IL0*[-l_l /4;0]; % Position , joint
r_ol = r_op + A_IU0*[l_u ;0]; % Position , motor
r_l_CoM = [0;0]; % Position , CoM lower leg
r_u_CoM = r_ol; % Position , CoM upper leg
r_i_CoM = r_l_CoM*m_l/(m_l+m_u) +... % Position , CoM system

m_u/(m_l+m_u)*r_u_CoM;

r_f = A_beta*(-r_sl1); % Vector , CoM lower leg to
% contact point turned by beta

r_a = -r_sl1 +[0;R]; % Vector , CoM lower leg to
% middle point of foot arc

r_b = r_i_CoM; % Vector , CoM lower leg to CoM
% system
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r_af = r_f -r_a; % Vector , middle point arc to
% rotated CoM lower leg

r_ab = r_b -r_a; % Vector , middle point arc to
% system CoM

r_ac = r_ab/norm(r_ab)*norm(r_af); % Vector , middle point arc to
% equilibrium arc position

seq = acos(r_af ’*r_ac/(norm(r_af)*... % Turning angle of system for
norm(r_ac))); % static equilibrium

% Check the turning direction
if r_ab (1) < 0

seq = -seq;
end

A_seq = [cos(seq),sin(seq);... % Rotational matrix , static
-sin(seq),cos(seq)]; % equilibrium position

r_oc = -r_sl1 +[0;R]+r_ac; % Vector , static equilibrium
% point on arc

r_h = A_seq*(-r_oc); % Vector , lower leg CoM to
% static equilibrium ground
% contact point

%% Initial conditions for static equilibrium
x_0 = 0; % Lower leg , horizontal displacement
y_0 = r_h(2); % Lower leg , vertical displacement
v_y_0 = 0; % Lower leg , vertical velocity
v_x_0 = 0; % Lower leg , horizontal velocity
omega_l_0 = 0; % Lower leg , angular velocity
omega_u_0 = 0; % Upper leg , angular velocity
phi_l_p = beta + seq; % Lower leg , angular position
phi_u_p = pi/2-phi_l_p; % Upper leg , angular position

l_0 = sqrt(l_h ^2+l_u^2-... % Length , relaxed spring length
2*l_u*l_h*cos(pi -...
phi_l_0 -phi_u_0));

%% Ground Energy
% Energy , standing position at ground. Note that the slacking due to the
% non -rigid spring is not taken into account!
E_0 = m_l*g*l_l/2* sin(phi_l_0) + ...

m_u*g*(l_l/2*sin(phi_l_0) + ...
l_D*sin(phi_l_0) + ...
l_G*sin(phi_u_0))...
+1/2* v_x_0 ^2*m_l ...
+1/2* v_y_0 ^2*m_l;

C.2 Run DS.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Robot Leg with Curved Foot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Fabio Giardina 2013 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Executive File %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

run Parameters

%% Initial conditions
q_A(:,1) = [x_0;y_0;phi_l_p;phi_u_p ]; % Initial position in

% minimal coordinates
u_A(:,1) = [v_x_0;v_y_0;omega_l_0;omega_u_0 ]; % Initial velocity in

% minimal coordinates
t_A (1) = 0; % Initial time
eps_N = ones(n,1)*eps_N; % Restitution vector normal

%( tangential is zero)
mu_i = ones(n,1)*mu; % Friction coefficients
dt = dt_i;
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NS = 0; % Check variable for
% numerical solution

fall = 0; % Check variable fall
k_gcc = 1; % Iteration variable jump
k_gcc_l = 1; % Iteration variable land

% Initialize animation elements
h_ul=line(0,0,’LineWidth ’,2);
h_ll=line(0,0,’color ’,’b’,’LineWidth ’,2);
h_f=line(0,0,’color ’,’b’,’LineWidth ’,2);
h_s=line(0,0,’color ’,’k’,’LineWidth ’,2);
h_g=line(0,0,’color ’,’k’,’LineWidth ’,2);

%% LCP solution check variable
% If no solution of the LCP should be found , zz is increased by 1 which
% leads to a recalculation of the last timestep with altered time increment
% dt. This is repeated maximally 20 times before a warning is displayed.
zz = 1;

%% Animation settings
ii = 1; % Initialize getframe parameter
ff = N/kk; % Variable for getframe loop

%% Implementation of the time -stepping algorithm (Glocker & Studer 2005)
tic
for i = 1:N

for j = 1:zz
%% Step (i): Calculate midpoint and end time
t_M = t_A(i) + 1/2*dt;

% If no solution of the LCP exists , change dt and recalculate
if zz >= 1

dt = dt_i/zz;
t_E = t_A(i) + dt;

else
t_E = t_A(i) + dt;

end

%% Step (ii): Calculate midpoint displacement
q_M = q_A(:,i) + 1/2*dt*u_A(:,i);

%% Step (iii): Matrix calculations
% Free moment function
if i > T_del

T_t(i) = A_T*sin(omega_T*t_M -phi_r);
else

T_t(i) = 0;
end

% Jacobians
% Lower leg translational jacobian CoM
Ja_l = [1,0,0,0;0,1,0,0;0,0,0,0];

% Upper leg translational jacobian CoM
Ja_u = [1, 0 , cos(q_M(3))*l(2) - sin(q_M(3))*l(1) + l_D*sin(

q_M (3)), -l_G*sin(q_M(4));...
0, 1 , -cos(q_M(3))*l(1) - sin(q_M(3))*l(2) + l_D*cos(

q_M (3)) , l_G*cos(q_M(4));...
0, 0 , 0 , 0];

% Upper leg translational jacobian CoM
Ja_Fu = [1, 0 , cos(q_M(3))*l(2) - sin(q_M(3))*l(1) + l_D*sin(

q_M (3)), -l_u*sin(q_M(4));...
0, 1 , -cos(q_M(3))*l(1) - sin(q_M(3))*l(2) + l_D*cos(

q_M (3)) , l_u*cos(q_M(4));...
0, 0 , 0 , 0];

% Upper leg translational jacobian spring connection point
Ja_Fl = [1, 0 , cos(q_M(3))*l(2) - sin(q_M(3))*l(1) + l_l/2* sin(

q_M (3)), 0;... % Upper leg translational jacobian CoM
0, 1 , -cos(q_M(3))*l(1) - sin(q_M(3))*l(2) + l_l/2* cos(

q_M (3)) , 0;...
0, 0 , 0 , 0];

56



% Lower leg rotational jacobian
Ja_Rl = [0,0,0,0;0,0,0,0;0,0,1,0];

% Upper leg rotational jacobian
Ja_Ru = [0,0,0,0;0,0,0,0;0,0,0,1];

% Mass matrix
M = [m_l+m_u , 0 , m_u*(-l(1)*sin(q_M(3))+l(2)*cos(q_M(3))+

l_D*sin(q_M(3))) , -l_G*sin(q_M(4))*m_u ;...
0 , m_l + m_u , m_u*(-cos(q_M (3))*l(1)-sin(q_M(3))

*l(2)+l_D*cos(q_M(3))) , l_G*cos(q_M(4))*m_u ;...
m_u*(cos(q_M (3))*l(2) - sin(q_M(3))*l(1) + l_D*sin(q_M(3))) ,

m_u*(l_D*cos(q_M (3)) - cos(q_M(3))*l(1) - sin(q_M(3))*l
(2)) , J_l + m_u*(l(1)^2-2*l(1)*l_D+l(2)^2+ l_D^2) , m_u*(
l_G*l(1)*(sin(q_M (4))*sin(q_M(3))-cos(q_M(4))*cos(q_M (3)))
+ l_G*l_D*(cos(q_M (4))*cos(q_M(3))-sin(q_M(4))*sin(q_M (3)

)) - l_G*l(2)*(sin(q_M(4))*cos(q_M (3)) + cos(q_M(4))*sin(
q_M (3))));...

m_u*(-l_G*sin(q_M (4))) , m_u*(l_G*cos(q_M(4))) , m_u*(l(1)*
l_G*(sin(q_M (4))*sin(q_M(3))-cos(q_M(4))*cos(q_M (3))) +
l_G*l(2)*(-sin(q_M(4))*cos(q_M (3))-cos(q_M(4))*sin(q_M(3))
)+l_G*l_D*(-sin(q_M (4))*sin(q_M(3))+cos(q_M(4))*cos(q_M (3)
))) , J_u + m_u*l_G ^2];

% Left side of equations of motion
h_l = [m_u*u_A(3,i)^2*(-l(1)*cos(q_M (3)) - l(2)*sin(q_M(3))+l_D*cos(

q_M (3))) - l_G*cos(q_M(4))*u_A(4,i)^2*m_u ;...
m_u*u_A(3,i)^2*( l(1)*sin(q_M (3)) - l(2)*cos(q_M(3))-l_D*sin(

q_M (3))) - l_G*sin(q_M(4))*u_A(4,i)^2*m_u ;...
m_u*u_A(3,i)^2*( l(1)*l_G*(sin(q_M (3))*cos(q_M(4))+sin(q_M(4))

*cos(q_M(3))) + l(2)*l_G*(sin(q_M(4))*sin(q_M(3))-cos(q_M
(4))*cos(q_M (3)))) - m_u*u_A(4,i)^2*l_D*l_G*(sin(q_M(3))*
cos(q_M (4))+sin(q_M(4))*cos(q_M (3)));...

m_u*u_A(3,i)^2*( l(1)*l_G*(sin(q_M (4))*cos(q_M(3))+cos(q_M(4))
*sin(q_M(3))) + l_G*l(2)*(sin(q_M(4))*sin(q_M(3))-cos(q_M
(4))*cos(q_M (3))) - l_G*l_D*(sin(q_M(4))*cos(q_M (3))+cos
(q_M(4))*sin(q_M(3))))];

% Right hand side equations of motion
l_F = sqrt(l_h ^2+l_u^2-2*l_u*l_h*cos(pi -q_M(4)-q_M (3)));

% Actual spring length
F_d = [l_h*cos(q_M (3))+l_u*cos(q_M(4));-l_h*sin(q_M (3))+l_u*sin(q_M

(4));0]; % Force direction of the spring

%Inhomogeneous terms of equations of motion
h_r = (Ja_Fl ’-Ja_Fu ’)*F_d/norm(F_d)*k*(l_F -l_0)... %

Spring force
+Ja_l ’*[0; -m_l*g;0]+Ja_u ’*[0; -m_u*g;0]... %

Gravity
-(Ja_Rl ’ + Ja_Ru ’) *[0;0;d*(u_A(4,i)+u_A(3,i))]... %

Damping moment
+[0;0; T_t(i);T_t(i)]; % Motor moment

% Gyroscopic accelerations of the system (Measure equality: M*du-h*dt
-dR=0)

h = -h_l + h_r;

% Rotation matrix of body fixed coordinate frame of the lower leg
A_Il = [cos(q_M (3)-beta),sin(q_M(3)-beta) ,0;...

-sin(q_M (3)-beta),cos(q_M(3)-beta) ,0;0,0,1];

% Calculate contact distances to ground and generalized force
% directions w_T(j) and w_N(j) of the contact j.
for j = 1:n

%Contact point on curved foot arc computation
if j <= n/2

k_x = sin((j-1-n/2)*alpha_i)*R+b_i/2-dff;
k_y = R*(1-cos((j-1-n/2)*alpha_i));

else
k_x = sin((j-1-n/2)*alpha_i)*R+b_i/2-dff;
k_y = R*(1-cos((j-1-n/2)*alpha_i));

end
% Ground distances of each contact point
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g_N(j) = q_M(2)-l(1)*sin(q_M (3))+l(2)*cos(q_M(3))-l_l/2*sin(q_M(3)
)+ A_Il (2,1)*k_x + A_Il (2,2)*k_y;

% Generalized force directions of each contact point
w_T(:,j) = [1;0;-l(1)*sin(q_M(3))+l(2)*cos(q_M (3))-l_l/2*sin(q_M

(3))- sin(q_M(3)-beta)*k_x+cos(q_M (3)-beta)*k_y ;0];
w_N(:,j) = [0;1;-l(1)*cos(q_M(3))-l(2)*sin(q_M (3))-l_l/2*cos(q_M

(3))- cos(q_M(3)-beta)*k_x -sin(q_M (3)-beta)*k_y ;0];
end

% Assign indices for the active contacts
[i_1 ,i_2 ,index ,W_N ,W_T ,CV] = indX(w_N ,w_T ,g_N ,n);

% If more than two contacts are closed , display a warning (To
% avoid this probelm you might want to decrease the time increment
% vector dt or the number of contact points n).
if sum(CV) > 2

disp(’WARNING: more than two contacts are closed!’)
CV = 0;

end

%% Step (iv): Solve the linear complementarity problem
% if contact is active , rearrange Problem and form an LCP (Glocker &

Studer 2005)
if i_1 > 0

E = eye(length(index));
Z = zeros(length(index));
mu = eye(length(index));
eps_Ni = 0;
for j = 1: length(index)

eps_Ni(j,j) = eps_N(index(j));
mu(j,j) = mu_i(j);

end

% LCP problem matrix A
A = [W_N ’*M^-1*(W_N -W_T*mu),W_N ’*M^-1*W_T ,Z;...

W_T ’*M^-1*(W_N -W_T*mu),W_T ’*M^-1*W_T ,E;...
2*mu,-E,Z];

% LCP problem vector b
b = [W_N ’*M^-1*h*dt+(E+eps_Ni)*W_N ’*u_A(:,i);...

W_T ’*M^-1*h*dt+(E)*W_T ’*u_A(:,i);zeros(length(index) ,1)
];

% Solve LCP enumeratively. Note that NS is a check -
% variable. If NS = 1 then there doesn ’t exist a solution
% of the LCP
[lambda_N ,lambda_R ,NS] = LCS(A,b,index);

% In case there is no solution for the LCP , alter zz. The
% reasons for not finding a solution might be due to a bad
% modelling.
if zz >= zz_top

disp([’Warning!t = ’, num2str(t_E) ,’: Linear
Complementarity Problem has no solution. Check the
mathematical model.’])

break
end

%% Step (v): Calculate u_E
if NS == 1

zz = zz + 1;
else

% Calculate u_E , the final velocity of iteration i
u_E(:,1) = M^-1*(W_N -W_T*E*mu)*lambda_N + M^-1*W_T*

lambda_R ...
+ M^-1*h*dt + u_A(:,i);

end
else

% If index number is zero , integrate u_E normally
u_E = M^-1*h*dt + u_A(:,i);

end
% Set new time increment
if NS == 0 && zz > 1
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zz = 1;
dt = dt_i;

end

end
%% Step (vi): Computation of q_E
q_E = q_M + 1/2*dt*u_E(:,1);
q_A(:,i+1) = q_E;
u_A(:,i+1) = u_E;
t_A(i+1) = t_E;

%% System Energy
% Define relevant vectors (Inertial coordinate system)
A_IL = [cos(q_M (3)),sin(q_M(3));-sin(q_M(3)),cos(q_M (3))];
A_IU = [cos(q_M (4)),-sin(q_M(4));sin(q_M(4)),cos(q_M (4))];

r_SL = [q_E (1);q_E(2)]; %
Position , CoM lower leg

r_Ml = q_E (1:2) + A_IL*(l); %
Position , middle lower leg

r_Ml (3,1) = 0;
r_OP = r_Ml + [-l_l/2* cos(q_E(3));l_l/2* sin(q_E(3));0]; %

Vector , origin to lower leg spring connection point
r_OF = r_Ml + [l_l/2* cos(q_E(3));-l_l/2* sin(q_E(3));0]; %

Vector , origin to lower leg contact point
r_OG = r_Ml + [-l_D*cos(q_E (3));l_D*sin(q_E(3));0]; %

Vector , origin to leg joint
r_OM = r_OG + [l_u*cos(q_E (4));l_u*sin(q_E(4));0]; %

Vector , origin to upper leg end point
r_GU = [l_G*cos(q_E(4));l_G*sin(q_E(4));0]; %

Vector , leg joint to upper leg CoM

r_CoM = r_SL*m_l/(m_l+m_u) + (r_OG (1:2)+r_GU (1:2))*m_u/(m_l+m_u); %
Position , Center of Mass system

r_CoM_h(i) = r_CoM (2); %
Distance , CoM from ground

r_UL = r_OG (1:2) + A_IU*[l_G ;0]; %
Position , upper leg

% Calculate positions of contact points
for j = 1:n

if j <=n/2
r_cf(:,j) = r_OF + A_Il*[sin((j-1-n/2)*alpha_i)*R+b_i/2-dff

;...
R*(1-cos((j-1-n/2)*alpha_i));0];

else
r_cf(:,j) = r_OF + A_Il*[sin((j-1-n/2)*alpha_i)*R+b_i/2-dff

;...
R*(1-cos((j-1-n/2)*alpha_i));0];

end
end

% Velocity CoM lower leg
v_l = [u_E (1);u_E(2) ;0];
% Velocity , CoM upper leg
v_u = [u_E (1)-sin(q_E(3))*l(1)*u_E(3)+cos(q_E(3))*l(2)*u_E(3)+l_D*sin

(q_E(3))*u_E(3)-l_G*sin(q_E (4))*u_E(4) ;...
u_E (2)-cos(q_E(3))*l(1)*u_E(3)-sin(q_E(3))*l(2)*u_E(3)+l_D*cos

(q_E(3))*u_E(3)+l_G*cos(q_E(4))*u_E(4) ;0]; % Velocity
, CoM upper leg

vl(i) = norm(v_l);
vu(i) = norm(v_u);
vlx(i) = u_E(1);
vly(i) = u_E(2);
E_pot_l = m_l*g*q_E(2); %

Potential energy , lower leg
E_kin_l = 1/2* m_l*v_l ’*v_l + 1/2* J_l*u_E (3)^2; %

Kinetic energy , lower leg
E_pot_u = m_u*g*r_UL (2); %

Potential energy , upper leg
E_kin_u = 1/2* m_u*v_u ’*v_u + 1/2* J_u*u_E (4)^2; %

Kinetic energy , upper leg
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E_spring = 1/2*k*(l_F -l_0)^2; %
Potential energy , spring

E_sys(i,:) = [E_pot_l ,E_kin_l ,E_pot_u ,E_kin_u ,E_spring ];
E_tot(i) = E_pot_l + E_kin_l + E_pot_u ...

+ E_kin_u + E_spring - E_0; % Total
Energy , System

E_tot1(i) = E_pot_l + E_kin_l;
E_tot2(i) = E_pot_u + E_kin_u;

%% Actuation power
P_M(i) = abs(T_t(i)*(u_E(3)+u_E(4))); % Power

of the free moment
if i >1

W_M(i) = W_M(i-1)+P_M(i)*dt; % Work
performed of free moment

else
W_M (1) = 0;

end
%% Velocity angle of center of mass
alpha(i) = atan((v_l(2)*m_l/(m_l+m_u)+v_u (2)*m_u/(m_l+m_u))/((v_l(1)*

m_l/(m_l+m_u)+v_u (1)*m_u/(m_l+m_u))))*180/pi;

%% Ground contact check
if index ~= 0 % Ground contact active

gcc(k_gcc) = 1;
t_gcc(k_gcc) = t_A(i);
i_gcc(k_gcc) = i;
x_gcc(k_gcc) = q_A(1,i);
k_gcc = k_gcc + 1;

else % Ground contact not active
t_gcc_l(k_gcc_l) = t_A(i);
i_gcc_l(k_gcc_l) = i;
if k_gcc_l > 2

% Get rid of non realistic flight phase points
if i_gcc_l(k_gcc_l -1) +10 < i_gcc_l(k_gcc_l) && i_gcc_l(k_gcc_l

-2) +10 < i_gcc_l(k_gcc_l -1)
i_temp = i_gcc_l;
clear i_gcc_l
i_gcc_l = [i_temp (1: k_gcc_l -2),i_temp(end)];
k_gcc_l = k_gcc_l -1;

end
end
x_gcc_l(k_gcc_l) = q_A(1,i);
k_gcc_l = k_gcc_l + 1;

end

%% Animation
% Set new values for plot objects
if i >= ff;
set(figure (1) ,’units ’,’normalized ’,’outerposition ’,[0 0 1 1])
figure (1)
set(h_ll ,’XData ’,[r_OP (1);r_OF (1)],’YData ’,[r_OP (2);r_OF (2)]);
set(h_ul ,’XData ’,[r_OG (1);r_OM (1)],’YData ’,[r_OG (2);r_OM (2)]);
set(h_f ,’XData ’,[r_cf (1,:)],’YData ’,[r_cf (2,:)]);
set(h_s ,’XData ’,[r_OP (1);r_OM (1)],’YData ’,[r_OP (2);r_OM (2)]);
set(h_g ,’XData ’,[-1,ww],’YData ’ ,[ -0.005 , -0.005]);

% Set Axis
axis equal % Equal x-y ratio
axis([-0.1,ww ,-0.1,wh]) % Set window properties

F(ii) = getframe; % Save picture of the current plot
ii = ii + 1; % Set next iteration variable getframe
ff = ff + N/kk; % Next iteration to be taken a picture
end

%Check if robot fell
if q_E (2) <=0

disp ( ’%%%%%%%%%%%%%%%%%%%%% Robot Fall
%%%%%%%%%%%%%%%%%%%%%%% ’)

fall = 1;
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break
end

end

t_sim = toc % Simulation time

%% Save avi file if necessary
%movie2avi(F,’C-Shaped Hopper ’,’compression ’,’None ’,’fps ’,kk/(N*dt))

%% Cost of transport
if fall < 1

E_exp = W_M(N) + E_tot (1); % Total energy spent
CoT_c = E_exp /((m_u+m_l)*g*(q_A(1,N)-q_A(1,1))); % Cost of Transport

else
E_exp = W_M(i) + E_tot (1);

end

%% Find jumping and landing angles
ka = 1;
ka_l = 1;
for j = 1:k_gcc -2

% Save jumping angle
% check if next iteration will change from ground to flight phase
if i_gcc(j+1)-i_gcc(j) > 10

if alpha(i_gcc(j)) >0
alpha_gcc(ka) = alpha(i_gcc(j)); % Jumping angle CoM
alpha_foot(ka) = (q_A(3,i_gcc(j))-phi_l_p)*180/pi;
t_ka(ka) = t_gcc(j); % Time at takeoff
i_ka(ka) = i_gcc(j); % Iteration at takeoff
x_ka(ka) = x_gcc(j); % Position of takeoff
ka = ka +1;

end
end

end
for hh = 1:k_gcc_l -2

% Save landing angle
% check if next iteration will change from flight to ground phase
if i_gcc_l(hh+1)-i_gcc_l(hh) > 10

if alpha(i_gcc_l(hh))<0
alpha_gcc_l(ka_l) = alpha(i_gcc_l(hh)); % Landing angle CoM
alpha_foot_l(ka_l) = (q_A(3,i_gcc_l(hh))-phi_l_p)*180/pi;
t_ka_l(ka_l) = t_gcc_l(hh); % Time at landing
i_ka_l(ka_l) = i_gcc_l(hh); % Iteration at landing
x_ka_l(ka_l) = x_gcc_l(hh); % Position of landing
ka_l = ka_l + 1;

end
end

end

C.3 IndX.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Robot Leg with Curved Foot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Fabio Giardina 2013 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Index Allocation File %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This function assigns index numbers to possible active contacts. This is
%needed , since the number of active contacts defines the dimension of the
%linear complementarity problem.

function [i_1 ,i_2 ,index ,W_N ,W_T ,check_v] = indX(w_N ,w_T ,g_N ,n)

i_1 = 0; %Active contacts index
initially zero

i_2 = 0;
index = 0;
check_v = zeros(n,1);

%Check how many contacts are closed
for j = 1:n
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if g_N(j) <= 0
check_v(j) = 1;

end
end

%Check which contact is closed and if the subsequent contact is closed
%as well. (It is assumed that only two contacts can be closed at the
%same time. If more than two contacts should be closed , a warning
%message is being displayed in the command window)
for j = 1:n

if g_N(j) <= 0 %Case contact j is active
W_N(:,1) = w_N(:,j); %Assign normal force direction

vector
W_T(:,1) = w_T(:,j); %Assign normal force direction

vector
i_1 = j;
if j <n

if g_N(j+1) <= 0 %Case contacts j and j+1 are
active
W_N(:,2) = w_N(:,j+1);
W_T(:,2) = w_T(:,j+1);
i_2 = j+1;
break;

end
end

end
end

%Index -Contact relationship vector
if i_1 > 0

index (1,:) = i_1;
if i_2 > 0

index (2,:) = i_2;
end

end
if index == 0

W_N = 0;
W_T = 0;

end

C.4 LCS.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Robot Leg with Curved Foot %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Fabio Giardina 2013 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% LCP Solver %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% This function solves the assigned linear complementarity problem (LCP)
% enumeratively. By altering the entries of the matrix C in a specified way
% (see literature on LCP ’s), a complementarity vector z is seeked , which
% comprises only elements larger or equal to zero. Note that the
% enumerative method finds all the solution of the LCP(given that a
% solution exists) but lacks in efficiency. However , since only two
% contacts are considered in this script , the performance is still

appropriate.

function [lambda_N ,lambda_R ,NS] = LCS(A,b,index)
%Find all combinations of complementary vectors and matrices

C = [eye(length(A)),-A];
Ck = C;
tt = 0;
z = zeros(length(index)*6,1);
NS = 0; % If NS = 1 then , there doesn ’t exist a solution of the

LCP

%% Solution for one closed contact
if length(index) == 1

for j = 1:2 %1
Ck(1,1) = 2-j;
if Ck(1,1) == 1

Ck(:,4) = zeros (3,1);
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else
Ck(:,4) = C(:,4);

end
for j = 1:2 %2

Ck(2,2) = 2-j;
if Ck(2,2) == 1

Ck(:,5) = zeros (3,1);
else

Ck(:,5) = C(:,5);
end

for j = 1:2 %3
Ck(3,3) = 2-j;
if Ck(3,3) == 1

Ck(:,6) = zeros (3,1);
else

Ck(:,6) = C(:,6);
end
if rank(Ck) == 3

z_c = Ck\b;
if z_c >= 0 %If z has

full rank and only nonnegative entries , a
solution was found.
tt = tt+1;
z = z_c;

end
end

end
Ck(:,6) = C(:,6);

end
Ck(:,5) = C(:,5);

end
%% Solution for two closed contacts

% If two contacts close at the same time , the number of iteration
% is increased times 2^3 -> 2^3*2^3 = 2^6
elseif length(index) == 2

for j = 1:2 %1
Ck(1,1) = 2-j;
if Ck(1,1) == 1

Ck(:,7) = zeros (6,1);
else

Ck(:,7) = C(:,7);
end
for j = 1:2 %2

Ck(2,2) = 2-j;
if Ck(2,2) == 1

Ck(:,8) = zeros (6,1);
else

Ck(:,8) = C(:,8);
end

for j = 1:2 %3
Ck(3,3) = 2-j;
if Ck(3,3) == 1

Ck(:,9) = zeros (6,1);
else

Ck(:,9) = C(:,9);
end
for j = 1:2 %4

Ck(4,4) = 2-j;
if Ck(4,4) == 1

Ck(:,10) = zeros (6,1);
else

Ck(:,10) = C(:,10);
end
for j = 1:2 %5

Ck(5,5) = 2-j;
if Ck(5,5) == 1

Ck(:,11) = zeros (6,1);
else

Ck(:,11) = C(:,11);
end

for j = 1:2 %6
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Ck(6,6) = 2-j;
if Ck(6,6) == 1

Ck(:,12) = zeros (6,1);
else

Ck(:,12) = C(:,12);
end

if rank(Ck) == 6
z_c = Ck\b;
if z_c >= 0 %If z has

full rank and only
nonnegative entries , a
solution was found.
tt = tt+1;
z = z_c;

end
end

end
Ck(:,12) = C(:,12);

end
Ck(:,11) = C(:,11);

end
Ck(:,10) = C(:,10);

end
Ck(:,9) = C(:,9);

end
Ck(:,8) = C(:,8);

end
end

%If no solution was found , set NS to 1
if tt == 0

NS = 1;
end

%% Repeat calculation in depth in case no solution was found
% If no solution was found , look for solutions with deficient
% C-Matrix ranks (Multiple solutions may occur. Note that the
% accelerations are still defined even though multiple solutions
% were found. The impact forces however are not.)
if NS == 1 && length(index)==1

%The rank of the C matrix is likely to be deficient. Since it
%has no effect on the accelerations , the warning message is
%turned off.
warning(’off ’,’MATLAB:rankDeficientMatrix ’);
for j = 1:2 %1

Ck(1,1) = 2-j;
if Ck(1,1) == 1

Ck(:,4) = zeros (3,1);
else

Ck(:,4) = C(:,4);
end
for j = 1:2 %2

Ck(2,2) = 2-j;
if Ck(2,2) == 1

Ck(:,5) = zeros (3,1);
else

Ck(:,5) = C(:,5);
end

for j = 1:2 %3
Ck(3,3) = 2-j;
if Ck(3,3) == 1

Ck(:,6) = zeros (3,1);
else

Ck(:,6) = C(:,6);
end

z_c = Ck\b;
if z_c >= 0 %If z has

full rank and only nonnegative entries , a
solution was found.
tt = tt+1;
z = z_c;

end
end
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Ck(:,6) = C(:,6);
end
Ck(:,5) = C(:,5);

end
warning(’on ’,’MATLAB:rankDeficientMatrix ’);

elseif NS == 1 && length(index)==2
warning(’off ’,’MATLAB:rankDeficientMatrix ’);
for j = 1:2 %1

Ck(1,1) = 2-j;
if Ck(1,1) == 1

Ck(:,7) = zeros (6,1);
else

Ck(:,7) = C(:,7);
end
for j = 1:2 %2

Ck(2,2) = 2-j;
if Ck(2,2) == 1

Ck(:,8) = zeros (6,1);
else

Ck(:,8) = C(:,8);
end

for j = 1:2 %3
Ck(3,3) = 2-j;
if Ck(3,3) == 1

Ck(:,9) = zeros (6,1);
else

Ck(:,9) = C(:,9);
end
for j = 1:2 %4

Ck(4,4) = 2-j;
if Ck(4,4) == 1

Ck(:,10) = zeros (6,1);
else

Ck(:,10) = C(:,10);
end
for j = 1:2 %5

Ck(5,5) = 2-j;
if Ck(5,5) == 1

Ck(:,11) = zeros (6,1);
else

Ck(:,11) = C(:,11);
end

for j = 1:2 %6
Ck(6,6) = 2-j;

if Ck(6,6) == 1
Ck(:,12) = zeros (6,1);

else
Ck(:,12) = C(:,12);

end
z_c = Ck\b;

if z_c >= 0
tt = tt+1;
z = z_c;
NS = 0;

end
Ck(:,12) = C(:,12);

end
Ck(:,11) = C(:,11);

end
Ck(:,10) = C(:,10);

end
Ck(:,9) = C(:,9);

end
Ck(:,8) = C(:,8);

end
end
warning(’on ’,’MATLAB:rankDeficientMatrix ’);

end

if tt == 0
NS = 1;

end
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%% Define solution of the LCP
lambda_N = z(length(index)*3+1: length(index)*3+1* length(index));
lambda_R = z(length(index)*4+1: length(index)*4+1* length(index));
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Appendix D

Function ”Find Optimum”

The presented code offers a simple method of finding the natural frequency of
the real robot in an experiment. By assuming that the provided power by the
motor is highest at the system’s natural frequency, and that the expended energy
rises gradually when approaching the natural frequency, this code provides fast
convergence. Experimental findings showed that, starting from an arbitrarily
bad frequency, the algorithm teaches the real robot to hop withing a few seconds.

% Write and Read to a NI USB -6008 DAQ device
clear all
close all
clc

%% Digital input enables ESCON
dio = digitalio(’nidaq ’, ’Dev1 ’);
hline = addline(dio , 0:11, ’out ’);
putvalue(dio , [8 8 8 8 8 8 8 8 8 8 8 8])

%% Initialization
ai = analoginput(’nidaq ’, ’Dev1 ’); % Analog Input
ao = analogoutput(’nidaq ’, ’Dev1 ’); % Analog Output
ao0 = addchannel(ao, 0); % Add desired channel for output

% (See also NI SCB 68 PIN positions)
ai0 = addchannel(ai, [0,1]); % Add desired channel for input

% (See also NI SCB 68 PIN positions)

timelength = 20; % total motor control time (s)
freq = [1;3;6]; % Initial Signal frequencies (Hz)
A = 2; % Current amplitude
r_c = 0.95/10; % Current to voltage ratio. e.g. 0.95/10 -> 0.95

% Ampere if the analog output is 10V

ai_value = [0,0]; % Initialize Input value
ao_array = 1; % Initialize Output value
time_array = 0; % Initialize time
sampt = 2; % Sampling time

tic % Start time

%% Start Control loop
disp(’Start of loop ’)
kk = 1;
energy =0;
jj = 1;

while time_array(end)<timelength
ao_value = A*(sin (2*pi*freq(jj)...

*time_array(end))); % Define motor current
ao_array =[ ao_array;ao_value*r_c]; % Write current in vector
putsample(ao, ao_value) % Set current at analog output
time_array =[ time_array;toc]; % Write time in vector
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tmp=getsample(ai); % Get motor winding 1 Voltage
ai_value = [ai_value;tmp]; % Write motor winding 1 Voltage

dt = mean(time_array (2: end) -...
time_array (1:end -1)); % Average time step

energy = 2*abs(ao_array(end))*... % Energy expended
abs(ai_value(end))*dt+energy;

% After sampling time is up, check for frequencies which showed a
% higher energy expenditure:
if toc + 2*dt>sampt*kk

results(kk ,:) = [freq(jj),energy ];
if jj == 4

res_temp (2,:) = [energy ,freq (2)];
else

res_temp(jj ,:) = [energy ,freq(jj)];
end
energy = 0;
kk = kk + 1;
if jj >= 3

% Check which tested frequency is closer to the natural
frequency

if res_temp (1,1)>res_temp (3,1) && res_temp (2,1)>res_temp (3,1)
f4 = (freq (1)+freq (2))/2;
freq = [freq (1);f4;freq (2);f4];
res_temp (3,:) = res_temp (2,:);

elseif res_temp (3,1)>res_temp (1,1) && res_temp (2,1)>res_temp
(1,1)
f4 = (freq (2)+freq (3))/2;
freq = [freq (2);f4;freq (3);f4];
res_temp (1,:) = res_temp (2,:);

end
jj = 3;

end
jj = jj + 1;

end
end
ao_value = 0;
putsample(ao, ao_value)
disp(’End of loop ’)

%% Disable ESCON
dio = digitalio(’nidaq ’, ’Dev1 ’);
hline = addline(dio , 0:11, ’out ’);
putvalue(dio , [0 0 0 0 0 0 0 0 0 0 0 0])
delete(ai)
delete(ao)

%% Transform Voltage
R2 = 22.2; % Voltage divider resistance 2 (kOhm)
R1 = 98; % Voltage divider resistance 1 (kOhm)
K = R2/(R1+R2); % Voltage reduction constant
VoltIn= -ai_value (:,1)/K;

%% Plot results
plot(time_array ,VoltIn)
hold on
plot(time_array ,ao_array ,’r’)
xlabel(’Time [s]’)
ylabel(’V/A’)

%% Calculate expended energy
figure (2)
en_sort = sortrows(results);
plot(en_sort (:,1),en_sort (:,2))
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Appendix E

Brushless DC Motor
Control

The motor used for the generation of the motor torque acting on the robot is a
brushless DC motor (BLDC). The BLDC motor consists of a permanent magnet
located in the center of the motor, which is rotating. Around the rotor, three
windings are arranged and connected in a way, that will allow then to produce
a variable rotating magnetic field. The motor windings are static, such that no
brush is needed for a switch of current, as it is the case for conventional DC
motors. The ability to drive the motor in a desired way, needs special control to
generate the driving magnetic field in the motor windings. Figure E.1 shows the
set-up of such a control system. A voltage supply guarantees the power source
for the motor to run. Six switches, which are managed by the controller, are
arranged, such that the current can flow either through winding 1-2, 1-3, 2-3,
or also in the opposite direction. This will generate a magnetic field, which will
drive the rotating permanent magnet in a desired way. In order to control the
motion of the magnet, three hall sensors are measuring the actual position. The
current signal of the controller through the motor winding is given by a pulse
width modulation signal (PWM). The trajectory of this signal can be seen in
figure E.1. A peculiar thing is, that the phase current given by the PWM signal,
is always positive for one third of a whole cycle, zero for one third, and negative
for one third. Knowing this comes in handy if one is to measure the dropping
voltage over the motor.

In the experiment with the robot, a Maxon EC motor was used. Due to its
high efficiency and versatility in terms of input signal, this seemed a reason-
able choice. Having said that, the control of the motor is rather untransparent.
The Maxon EC motor came with a ESCON control module, which generated
the PWM signal, as has been discussed already in section 6.2. The current
controlled by the ESCON can be requested from the module, and it matches
the desired reference signal given from the Matlab desktop PC (see figure 6.2).
However, the dropping voltage can not be measured directly from the module,
and needs to be assessed by using an external measurement. This can be done
by measuring the voltage drop of one motor winding to the ground. After having
taken several measurements, the resulting PWM signal could not be interpreted
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Figure E.1: Illustration of the control of a brushless DC motor (BLDC)1.

correctly due to its high signal switching (figure E.2).
In order to overcome this problem, a RC filter was designed with a cut-off fre-
quency around 50 kHz, which is the switching frequency of the PWM signal.
The elements of the RC filter can be seen in figure 6.3. The resulting check was
a nominal voltage measurement of the Maxon motor. As shown in figure E.2,
the filtered signal shows a smooth distribution of the voltage. In order to verify
the measurement, a nominal voltage experiment was performed. By braking the
motor manually while sending the nominal current through the motor windings,
the nominal voltage should be reached. The nominal current is given in the mo-
tor specification as 0.95A and the voltage as 48V. As can be seen in figure E.2,
this is double the voltage measured. The reason is that the voltage drop from
only one motor winding to the ground was measured. While the full voltage
drops over one third of the PWM period, only half of the voltage is measured
over another third, as the winding is not active but still measuring the node
current, and no voltage drops over the last third of the period, as the point of
the winding measurement is directly attached to the ground. When averaging
the measured voltage, this leads to exactly half of the nominal voltage, which
corresponds to the measurement.
With this certainty in mind, we are able to compute the used power by the
motor as described in section 6.2. A voltage measurement of the motor winding
with a sinusoidal current input as a reference can be seen in E.3.

1Picture Source: http://www.mpoweruk.com/motorsbrushless.htm, 4.10.2013.
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Figure E.2: (a) Plot of a unfiltered nominal voltage measurement with the used
Maxon EC 45 Flat BLDC motor. Plot (b) shows the RC-filtered nominal voltage
measurement. The measurement was performed by braking the motor manually while
sending the nominal current through the motor windings. The measurement is the
voltage drop of one motor winding to the ground.
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Figure E.3: Plot of voltage measurement with sinusoidal current reference input.
Current amplitude is 3.8A and frequency is 4.3Hz.
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